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I. INTRODUCTION 

In recent years, publically-owned wastewater treatment plants ( POTWs ) have been 

faced with increased quantities of organic-containing wastewaters which must undergo 

treatment. Increasing populations and significant industrial wastewater contributions have 

lead to the situation where many POTWs have approached, or have exceeded their design 

capacities. Also, in today's economic climate, federal funds for the expansion of POTWs are 

rare or nonexistent. 

In response to organic overloading and a lack of federal funds for expansion, many 

POTWs have been forced to increase sewer-use fees to wet industries to act as an incentive for 

industries to develop ways to reduce their organic discharges. 

Aside from process engineering applications, which may focus on waste minimization 

techniques, there are generally three methods industries use to pretreat their wastewaters 

including: 

1. Physical-chemical treatment 

2. Aerobic biological treatment 

3. Anaerobic biological treatment 

Physical-chemical techniques serve to remove organic matter firom industrial 

wastewaters using a variety of mechanisms. An example is dissolved air flotation in which 
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organic matter along with a large fraction of water is removed by air injection, flotation, and 

skimming removal mechanisms. In physical-chemical techniques, the organic matter is not 

destroyed but is simply removed firom the waste stream. Characteristically, physical-chemical 

methods create large volumes of waste sludge. 

Aerobic biological treatment involves using aerobic microorganisms to metabolize 

organic matter in an industrial effluent. Aerobic treatment has several disadvantages, including 

large power requirements to provide oxygen transfer, nutrient requirements for bacterial growth, 

large land areas are necessary, and a relatively large quantity of excess biomass is produced 

which must be dewatered and ultimately disposed. 

Anaerobic biological treatment involves using a consortium of facultative and 

anaerobic microorganisms to metabolize and degrade organic matter in industrial effluents. No 

oxygen is necessary, less waste sludge is produced, and methane, a useful fuel by-product, is 

generated during the process. 

Several high-rate anaerobic processes have been developed during the last forty years. 

These processes have the ability to treat industrial wastewaters high in organic matter at low 

hydraulic retention times ( HRTs ). 

Preliminary research was conducted at Iowa State University on a new high-rate two-

stage, two-temperature anaerobic treatment process ( Harris, 1992 ). This new process is being 

termed the Temperature-Phased Anaerobic Biofilter Process, or TPAB. The TPAB process 

involves a thermophilic anaerobic biofilter connected in series to a mesophilic anaerobic 
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biofilter. In a laboratory demonstration at Iowa State University, the TPAB process in its 

initial configuration of equal size thermophilic and mesophilic stages proved very promising. 

COD removals were in excess of 90%. This research attempts to more fully characterize the 

TPAB process. 
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IL OBJECTIVES AND SCOPE OF STUDY 

A review of the Uterature uncovered several studies on anaerobic treatment using two-

stage processes, but no specific study was located where a two-stage process was described 

using a first-stage thermophilic anaerobic filter connected in series to a second-stage mesophilic 

anaerobic filter. 

Previous studies involved two-phase processes were found to most often involve the 

concept of phase optimization. Phase optimization involves the use of kinetic controls with 

dilution rates to provide an optimum environment for the rapid-growing acidogens in the first 

stage and slower-growing acetogens and methanogens in the second stage. 

The TPAB process was first undertaken at Iowa State University not for phase 

optimization, but for optimum system performance in terms of organic matter removal. The 

initial TPAB system involved identical size units for both the thermophilic and mesophilic stages 

at system HRTs of 24 and 48 hrs. 

The purpose of this study was to perform an in-depth characterization of the TPAB 

process in the laboratory over a range of organic loading rates and HRTs. 

Some specific objectives of this research were to: 

1. Determine if an optimum reactor size ratio exists between the 

thermophilic and mesophilic phases in the TPAB system. 
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2. Collect fundamental data on thermophilic anaerobic biofilter treatment using a 

complex soluble synthetic waste at HRTs of 3, 4.5, 6, and 9 hrs. 

3. Investigate the thermophilic anaerobic biofilter to determine the minimum 

effective HRT. 

4. Measure the effect of operation of the thermophilic biofilters after saturation 

loading has been achieved. 

5. Determine the effect of potentially high concentrations of ammonia 

on both phases of the TPAB process. 

6. Measure individual volatile acids produced during treatment, and determine the 

effect of high concentrations of volatile acids on the TPAB process. 
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III. LITERATURE REVIEW 

The literature review is divided into five sections: a) fundamentals of anaerobic 

digestion, b) microbiology of methanogens, c) thermophilic anaerobic treatment, d) fixed-film 

processes, e) two-phase anaerobic treatment, and f) temperature-phased anaerobic biofilter 

development. This review attempts to include previous work relevant to this research. 

Fundamentals of Anaerobic Digestion 

Anaerobic digestion is a biological treatment process that involves the use of a 

mixed population of microorganisms to convert and stabilize organic matter in wastes. The 

organic matter is stabilized to carbon dioxide (CO;) and methane (CHJ in the absence of 

oxygen. Anaerobic digestion has been practiced for over half a century, and was first used for 

the degradation of municipal sewage sludge. 

Since the 1950s, anaerobic digestion has been applied not only for sewage sludge, 

but has gained popularity as a treatment technique for both dilute and high-strength industrial 

wastewaters. 

There are two types of biological treatment, aerobic and anaerobic. In aerobic 

treatment systems, rapidly-dividing microorganisms degrade organic matter into carbon dioxide 

and water. The aerobic degradation of organic matter releases a large quantity of energy, which 

is largely converted into new microbial cells. Because the aerobic microorganisms have a high 

growth rate, excess biomass must be removed and ultimately disposed as biological waste 
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sludge. Large quantities of oxygen must be supplied to an aerobic system which requires a 

significant power input to the system. Aerobic biological treatment systems were often viewed 

in the past as superior to anaerobic systems when energy for oxygen input was less expensive 

and the land to dispose of excess biomass was more plentiful. 

Anaerobic microorganisms are relatively slow-growing because less energy is released 

in the reactions involved in the anaerobic stabilization of organic matter ( McCarty, 1964b ). 

Because the anaerobic microorganisms are slow-growing, there is a low production of waste 

biological sludge. Also, because of the lower growth yield, fewer nutrients such as nitrogen 

and phosphorus are required than are typically needed for aerobic systems. Anaerobic systems 

do not require oxygen, thus eliminating the power requirement and aerating equipment 

necessary in aerobic systems. Since oxygen is not required in anaerobic systems, treatment rates 

are not limited by oxygen transfer. This means that a higher degree of waste stabilization is 

possible using an anaerobic treatment process. Another important advantage of anaerobic 

systems is the production of methane gas as a useful by-product that results from the stabilization 

of organic matter. This methane can be utilized as a valuable energy source at the treatment site. 

There are several disadvantages of anaerobic treatment systems ( McCarty, 1964a; 

Obayashi, 1985 ). Because of the slower growth rate of some of the anaerobic microorganisms, 

there is often a slow start-up period for an anaerobic system. Another disadvantage is that in 

practice, mesophilic temperatures are often used for optimal growth of the anaerobic 

microorganisms. Also, anaerobic systems are inable to achieve low soluble substrate concen­
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trations in the final effluent. The disadvantages of anaerobic treatment as compared to aerobic 

treatment are few. 

The primary objective of anaerobic digestion is the stabilization of organic matter. 

Stabilization is accomplished by the conversion of organics into the final end products, 

methane and carbon dioxide. 

Anaerobic digestion of organic matter can be divided into three steps including: 1) 

hydrolysis, liquefaction, and fermentation, 2) hydrogen and acetic acid formation, and 3) 

methane formation, as illustrated in Figure 1 ( Parkin and Owen, 1986 ). Although anaerobic 

digestion is often described as a three-step process, the metabolism of the microbial groups 

involved are interdependent. At least five different groups of microorganisms are involved, 

including the fermentive bacteria, hydrogen-producing and hydrogen-consuming bacteria, 

acetogenic bacteria, carbon dioxide reducing bacteria, and the aceticlastic methanogens. 

The first step in anaerobic digestion is hydrolysis and liquefaction ( Parkin and Owen, 

1986 ). Hydrolysis and liquefaction involves the breakdown of particulate and complex 

insoluble matter into smaller molecules which can pass through microbial cell walls. 

Extracellular enzymes, which are produced by hydrolytic bacteria, accomplish the hydrolysis and 

liquefaction steps. No waste stabilization takes place during this first step, rather the organic 

matter is converted into a form which can be taken up by the microorganisms. Anaerobic 

digestion may be limited by the hydrolysis and liquefaction step if the waste to be treated 

contains a large portion of particulate material. Some wastes may contain a significant portion 
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Figure 1. Methane formation in anaerobic digestion 
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of refractory or nonbiodegradable organic material which is not able to be hydrolyzed by 

microorganisms. 

Once the organic matter has been hydrolyzed into smaller molecules, the smaller 

molecules are fermented into short-chain fatty acids such as propionic, butyric, and valeric 

acids. The bacteria which are involved in these fermentative reactions include facultative 

anaerobes and strict or obligate anaerobes. Acetic acid, hydrogen, and carbon dioxide are also 

formed during the fermentation step. During the fermentation reactions, organic matter is once 

again changed in form but is not stabilized. 

The long chain fatty acids are next converted into acetate, carbon dioxide, and hydrogen. 

Some of the fatty acids are converted into propionate, but the majority are converted into acetate 

by the acetogenic microorganisms ( Parkin and Owen, 1986 ). 

Waste stabilization occurs in anaerobic digestion by two main mechanisms, acetate 

cleavage by aceticlastic methanogens, and carbon dioxide reduction by C02-reducing 

methanogens ( McCarty, 1964a; Parkin and Owen, 1986 ). During acetate cleavage, carbon 

dioxide is also produced and either escapes as a gas or is converted to bicarbonate alkalinity. 

From C"'* tracer studies it was determined that approximately 72% of methane production results 

from acetate cleavage, and the remaining 28% of methane production results from the reduction 

of carbon dioxide using hydrogen ( Jeris and McCarty, 1962; Parkin and Owen, 1986). Acetate 

and hydrogen are the major substrates used by methanogens. Other substrates which have been 

utilized to a lesser extent by a limited number of methanogens include formate, methanol, 

methylamines, and carbon dioxide ( Gottschalk, 1986 ). 
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Anaerobic waste treatment kinetics have been evaluated using the kinetic theories of 

growth and substrate utilization. These theories are based on the continuous steady-state 

behavior of pure cultures of microorganisms using a single limiting substrate ( McCarty, 1966). 

An understanding of the kinetics of anaerobic digestion is important in understanding the key 

factors affecting process efficiency and stability ( Parkin and Owen, 1986 ). 

The Monod equation describes cellular growth and is often used as a basis to describe 

bacterial growth kinetics in anaerobic treatment systems: 

S 
Il = 

K, + S 

where p (1/day) is termed the net specific bacterial growth rate, (1/day) is the maximum 

specific growth rate, K, is the half-saturation or half-velocity constant (mass of 

substrate/volume), and is equal to the concentration of the rate limiting substrate when |x = 

S is the limiting substrate concentration (mass/volume) ( Shuler and Kargi, 1992 ). 

The Michaelis-Menton equation shown below was first developed for single substrate 

enzyme catalyzed reactions, and is often used for biological systems to express substrate 

utilization rates: 

km S 
k = 

K, + S 



www.manaraa.com

12 

where k (1/time) is the substrate utilization rate, and k^ is the specific substrate utilization rate 

(1/time). Kj has been defined as the driving force required to achieve half of the maximum 

specific substrate utilization rate ( Metcalf and Eddy, 1991 ). 

The yield of biomass per unit of substrate utilized is very important, especially for 

anaerobic systems. The yield can be defined as: 

; 
Y = 

k 

where k is the substrate utilization rate and p. is the net specific bacterial growth rate. 

These fundamental equations have been applied to anaerobic biological treatment 

systems using the following two equations ( Parkin and Owen, 1986): 

-dS k S X 

dt K, + S 

and 

dX 
— = Y (dS/dt) - bX 
dt 

where, 
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dS 
— = Rate of organic matter removal 
dt (mass substrate/vol-time) 

X = Biomass concentration (mass/volume) 

b = Bacterial decay rate (1/day) 

The first equation states that the rate of organic matter removal is a function of the 

substrate concentration (S), the amount of biomass present (X), the substrate utilization rate 

(k), and the driving force or velocity of the substrate removal by the microorganisms. 

The second equation states that the biomass growth rate is a function of the yield, or how 

quickly microorganisms can grow and utilize the organic matter, less the decrease in biomass 

as a function of endogenous bacterial decay. 

Combining the above two equations results in a third relationship as follows: 

Y k S 
= - b 

K, + S 

The net specific growth rate of the biomass is a function of the amount of substrate, how quickly 

the microorganisms utilize the substrate, and the yield of the biomass, less the loss of biomass 

related to endogenous decay. 

The solids retention time is related to the net specific growth rate as follows ( Parkin and 

Owen, 1986 ): 
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1 Y k S 
— = - b = |a 

0c K, + S 

In this equation, S is the effluent organic matter concentration from a given anaerobic treatment 

process. This equation states that the net specific growth rate, n, is equal to the inverse of the 

biological solids retention time 0^, also known as the solids retention time, SRT. From the 

above relationship, it is concluded that bacterial growth rate and process efficiency, in terms 

of effluent organic concentration S, can be controlled by controlling the SRT or 0^. 

Temperature influences the metabolic rates of microorganisms and the substrate 

utilization rate. The temperature dépendance of biological rate constants is important in 

assessing the overall removal efficiency of a given biological process ( McCarty, 1966 ). 

Although temperature influences substrate utilization rates, temperature does not affect growth 

yields. Although growth yields are not affected by temperature, the net specific growth rate of 

biomass, n, is affected, since at higher temperatures the endogenous decay of microorganisms 

increases. The effect of temperature on the reaction rate of a biological process is expressed as 

follows: 
(T - 20) 

= K20 0 

where, 

Kt = Rate coefficient at any temperature 

K20 = Rate coefficient at temperature of 20° C 
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0 = Temperature activity coefficient 

T = Temperature, ° C 

Successful anaerobic treatment involves many, often interrelated factors. The most 

important control parameters for anaerobic treatment include ( McCarty, 1964b; Dague, 1967; 

Dague, 1970; Parkin and Owen, 1986 ): 

1. Solids retention time. 

2. Maintenance of anaerobic conditions ( lack of oxygen ). 

3. pH of 6.5 to 8.2. 

4. Optimum temperatures: 

Mesophilic range - 30 to 38° C 

Thermophilic range - 50 to 60° C 

5. Sufficient biological nutrients. 

6. Absence of toxic materials. 

One of the key factors affecting process stability and efficiency is the solids retention time, 

or SRT ( Dague, 1967; Dague, 1970 ). SRT is defined at steady-state as the mass of solids 

contained in a reactor divided by the mass of solids wasted per day. 

Dague conducted significant research on solids retention times of anaerobic treatment 

systems. He stated that since the regeneration rate of methanogenic bacteria is two to ten days 

at mesophilic temperatures, the minimum SRT for operation in the mesophilic range should be 
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approximately ten days. Since regeneration rates of microorganisms are higher at higher 

temperatures, the minimum SRT must be less than ten days at higher temperatures. If high 

SRTs can be achieved for a given anaerobic treatment process, then the process will have an 

inherent margin of safety in case of treatment upsets. Parkin recently stated that the SRT is the 

most important design factor for anaerobic processes ( Parkin and Owen, 1986 ). 

Maintenance of anaerobic conditions is imperative in anaerobic treatment processes. 

Oxygen is toxic to methanogenic microorganisms since they are obligate anaerobes. This is 

extremely important since the growth of the methanogenic bacteria is considered to be the rate 

limiting step in anaerobic treatment ( McCarty, 1964b ). 

Maintenance of system pH in the proper range is required for efficient anaerobic 

treatment. The generally accepted range for good process efficiency is 6.5 to 8.2, with the 

optimum range being 6.8 to 7.2 ( McCarty, 1964b ). Deterioration of the anaerobic process 

has been reported at pH values below 6.5 and greater than 8.2 ( Duarte and Anderson, 1983; 

Seagren, Levine and Dague, 1990 ). The methanogens are thought to be the most sensitive to 

pH changes ( Parkin and Owen, 1986 ). 

During system imbalance, the volatile acids produced by acetogenic bacteria increase at 

a faster rate than can be used by the acetoclastic methanogens. Unless the system contains 

sufficient buffering capacity measured as alkalinity, the pH will decrease. Prevention of pH 

imbalances may require the addition of buffering materials such as bicarbonates to maintain the 

pH in the neutral range ( McCarty, 1964b ). Alkalinities ranging from 2500 to 5000 mg/L ( as 

CaCO] ) are desirable in anaerobic treatment systems. 



www.manaraa.com

17 

Nutrients must be present in sufficient quantities to ensure efficient anaerobic waste 

stabilization. Nitrogen and phosphorus are the nutrients which are required in the highest 

concentration, and are termed macronutrients. The commonly used empirical formula for a 

bacterial cell is C5H7O2N ( McCarty, 1964b ). Nitrogen compromises 12% of the bacterial cell 

mass, and the substrate should contain sufficient nitrogen for microbial growth. The 

phosphorus requirement is approximately 1/7 to 1/5 of the nitrogen requirement. Nitrogen is 

used to synthesize structural proteins, enzymes, RNA, and DNA. Phosphorus is required to 

synthesize energy storage compounds such as ATP, and also in the assembly of RNA and DNA 

( Gottschalk, 1986; Parkin and Owen, 1986 ). 

Other nutrients are required in lower concentrations than nitrogen and phosphorus, and are 

commonly termed micronutrients. Micronutrients which are known to be essential for 

anaerobic growth include iron, nickel, cobalt, sulfur, calcium, and some trace organics ( Parkin 

and Owen, 1986 ). Although it is known that these micronutrients are required, the complete 

nutritional requirements for the methanogens has not been fully determined ( Takashima and 

Speece, 1989 ). 

Many industrial wastewaters have been labelled as difficult to treat. Many of these 

wastewaters are often lacking in essential macro or micronutrients. A detailed analysis of the 

wastewater is necessary. The addition of supplemental nutrients may reclassify a difficult to 

treat industrial wastewater into a prime candidate for anaerobic treatment ( Takashima and 

Speece, 1989 ). 
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Toxicity in any biological waste treatment process may cause inhibition of 

microorganisms, leading to system failure. Whether a substance is toxic is a matter of the nature 

of the substance, concentration, and acclimation. Many substances are stimulatory in low 

concentrations, and only become inhibitory at higher concentrations. The precise concentration 

at which a substance may become inhibitory depends on the nature of the substance ( McCarty, 

1964c; Parkin and Owen, 1986 ). 

It is often mistakenly believed that anaerobic microorganisms, especially methanogens, 

are more sensitive to toxic substances as compared to aerobic or facultative microorganisms. 

If a sufficient biological safety factor is provided, in terms of a large SRT, anaerobic and aerobic 

systems should display similar toxicity responses ( Parkin and Owen, 1986 ). 

Industrial wastewaters characteristically can have higher concentrations of potentially toxic 

substances than are generally found in wastewater sludges. Analysis of the raw wastestream is 

vitally important in determining the potential for pretreatment of such wastewaters using 

anaerobic treatment. Higher concentrations of toxic substances may be tolerated if there is 

proper acclimation of the microorganisms ( Parkin and Owen, 1986 ). 

There are a number of different control methods that may be used for toxic substances 

including ( McCarty, 1964c ): 

1. Remove toxic material fi:om waste. 

2. Dilute below the toxic level. 



www.manaraa.com

19 

3. Form insoluble complex or precipitate. 

4. Antagonize toxicity with another material. 

Table 1 summarizes the concentrations of various inorganic substances considered to be 

inhibitory to anaerobic treatment. Table 2 lists inhibitory concentrations for selected organic 

substances ( Parkin and Owen, 1986 ). 

Ammonia-nitrogen and bicarbonate alkalinity are produced during the degradation of 

organics containing proteins. Ammonia-nitrogen is thought to be toxic in two ways, depending 

on pH. As illustrated in the equation below, ammonia-nitrogen may be present in the form of 

the ammonium ion, or as dissolved ammonia gas, NH3 ( Albertson, 1961; McCarty and 

McKinney, 1961 ): 

NH3 + H2O ^ NH/ + OH-

At a higher pH, more ammonia-nitrogen will be present as free ammonia, NH3-N. At a 

lower pH, the NH/ ion will predominate. It is generally accepted that ammonia toxicity is 

associated with the free ammonia, NHj-N, and concentrations in excess of 100 mg/L potentially 

may cause severe toxicity ( Kugelman, 1971; Kroeker, 1979 ). 

Using the following equations, the concentration of free ammonia can be determined at 

any given pH ( McCarty and McKinney, 1961 ): 
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[NH/] [OH ] 

[NH3] [H2O] 

= Kj (1.85-10 'at 35° C) 

[H1 [OH] 

[HP] 
= Kd(2.09-10-"'at35°C) 

Combining the above two equations: 

[NH3]f„, = 1.13-10-'[NH/] (at35''C) 

[H1 , 

Temperature also has an effect on the relative concentration of free NH3-N for a system. 

Higher temperatures result in relatively higher concentrations of free ammonia, and lower 

temperatures result in lower concentrations of free ammonia ( Parkin and Owen, 1986 ). Total 

ammonia concentrations exceeding 1,500 mg/L are generally accepted to be inhibitory to any 

anaerobic treatment system ( McCarty, 1964c ). With proper microbial acclimation, total 

ammonia concentrations ranging from 4,500 to 9,000 mg/L have been reported as tolerable in 

anaerobic treatment ( Parkin and Miller, 1982; Koster and Lettinga, 1988 ). 
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Table 1. Inhibitory concentrations of inorganics for anaerobic treatment 
(Parkin and Owen, 1986) 

Substance 
Moderately 
Inhibitory 

mg/L 

Strongly 
Inhibitory 

mg/L 

Na" 3,500-5,500 8,000 

2,000-4,500 12,000 

1,000-1,500 3,000 

Ca'" 2,500-4,500 8,000 

Ammonia-nitrogen 1,500-3,000 >3,000 

Sulfide 200 200 

Copper - 0.5 (soluble) 
50-70 (total) 

Chromium VI - 3.0 (soluble) 
200-260 (total) 

Chromium III - 180-420 (total) 

Nickel . 2.0 (soluble) 
30 (total) 

Zinc - 1.0 (soluble) 



www.manaraa.com

22 

Table 2. Inhibitory concentrations of selected organics for anaerobic treatment 
(Parkin and Owen, 1986) 

Organic Inhibitory Concentration 
mg/L 

Formaldehyde 50-200 

Chloroform 0.5 

Ethyl Benzene 200-1,000 

Ethylene Dichloride 5 

Kerosene 500 

Volatile acid concentrations increase in anaerobic treatment during system imbalance. 

It has been reported that acetate is the least toxic of the volatile acids, and that propionate is the 

most toxic ( Mawson et al., 1991 ). It has also been observed that if the pH is maintained in 

the proper range, volatile acid concentrations up to 6,000 mg/L can be tolerated with no loss in 

methane production ( McCarty et al., 1964e ). 
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It has been reported that it is the unionized volatile acids which are toxic to methanogens. 

The concentration of unionized volatile acids is dependent on system pH. Unionized volatile 

acid levels ranging from 30 to 60 mg/L have been reported to be inhibitory. At a total volatile 

acid concentration of 5,500 mg/L and a pH of 7.0, the unionized volatile acid level is 30 mg/L. 

At a system pH of 6.5, a total volatile acid concentration of 1,800 mg/L is required to reach an 

unionized volatile acid concentration of 30 mg/L. If the pH in the system is maintained at 7.0, 

a relatively high concentration of total volatile acids can be tolerated ( Andrews, 1969; Parkin 

and Owen, 1986 ). 

High concentrations of organic sulfur compounds are found in many industrial 

wastewaters, especially pulp and paper mills. Organic sulfur can be degraded by hydrolytic 

bacteria to form sulfate, and sulfate can be utilized by sulfate-reducing bacteria in anaerobic 

systems to form hydrogen sulfide ( Samer et al, 1988 ). There are two problems associated with 

wastewaters high in sulfate. Firstly, the sulfate-reducing bacteria also utilize hydrogen and 

acetic acid as energy sources, and outcompete methanogens for these substrates since the sulfur-

reducing bacteria are energetically favored. The second problem associated with wastewaters 

high in sulfate occurs when the sulfate is reduced to sulfide. Soluble hydrogen sulfide 

concentrations above 200 mg/L are toxic to the methanogenic bacteria, and can cause 

significant decreases in methane production ( Parkin and Owen, 1986 ). There have been cases 

where sulfides have been added to a wastestream to precipitate heavy metals, and caution should 
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be taken so that heavy metal toxicity is not traded for sulfide toxicity. Hydrogen sulfide may 

be present in a gaseous or liquid form, or as the HS" ion as shown below ( S amer et al, 1988 ): 

H^S (gas) ^ H^S (liquid) # HS' + H^ 

At a system pH above 7, the less toxic HS" will predominate, and at a system pH less than 

7, the more toxic free soluble H^S will predominate. There are several methods for the confrol 

of HjS toxicity including ( S amer et al, 1988 ): 

1. Precipitation of HjS by the addition of metal ions. 

2. Increase of pH by the addition of chemicals to convert H^S to the less toxic HS'. 

3. Gas washing to remove HjS from the biogas and the recirculation of the 
washed biogas to remove more HjS from the liquid phase. 

Heavy metals including chromium (VI), copper, nickel, and zinc are toxic to anaerobic 

systems. The total concentration of heavy metals in a wastewater may be much higher than the 

soluble concentration of the free metal ions in solution, due to various chemical reactions. These 

reactions may reduce the "available" heavy metal concentration by a factor of over 1000. 

Although the soluble concentrations of free metal ions is usually quite low, it has been reported 

that extremely low concentrations of these ions have resulted in severe toxicity to anaerobic 
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systems ( Parkin and Owen, 1986 ). Sulfides have been successfiilly used to precipitate out 

heavy metals from various wastewaters ( Lawrence and McCarty, 1965 ). 

Successful applications for the treatment of a wide varient of wastes can be possible with 

a proper understanding of the flmdamentals of anaerobic treatment. Better treatment efficiencies 

and control can be obtained when care is taken to recognize the importance of various control 

parameters such as proper pH and alkalinity, sufficient nutrients, adequate solids retention time, 

and an absence or control of toxic materials including ammonia, volatile acids, sulfides, 

organics, and heavy metals. 

Microbiology of Methanogens 

In 1776, the Italian physicist Alessando Volta was the first to make the observation of 

"combustible air" being formed in the sediments of streams, bogs, and lakes ( Barker, 1956 ). 

This "combustible air" or biogas was later discovered to be a mixture of methane ( CH4 ) and 

carbon dioxide ( CO;). 

The scientific question as to how this biogas evolved was studied by a number of 

scientists. In 1868, Bechamp was the first to claim that a microbial process was the cause of 

biogas formation. Others such as Seyer, Omelianski, and Sohngen substantiated Bechamp's 

findings ( Barker, 1956 ). 

Anaerobic life was first discovered by Pasteur between 1857 and 1876 while he was 

devoting considerable effort to the study of bacterial fermentations { Dague, 1981 ). He isolated 
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Clostridia sp. which under fermentative conditions produced butyric acid from sugars. It was 

observed by Pasteur that oxygen was lethal to these microorganisms. 

During the latter half of the nineteenth century, scientists studied the microbial basis for 

methane formation using mixed microbial cultures. It was realized that the organisms 

responsible must be anaerobic, since oxygen was toxic to the mixed cultures. Oxygen toxicity 

proved to be a major obstacle in attempts to isolate pure cultures of microorganisms 

responsible for methane production. In 1936, Barker was the first to isolate a pure culture of 

methane-producing bacteria, which were termed methanogens ( Gottschaulk, 1988 ). 

Barker used enrichment cultures to isolate methanogens ( Barker, 1936 ). In his 

isolation technique, a boiled solution of inorganic salts and tap water served as a source of trace 

nutrients. Ammonium salts were added as a nitrogen source, and sodium sulfide was added as 

a reducing agent for the media. Calcium carbon, aspestos fibers, or sterile mud was also added 

as a sediment material. At the time, it was thought that methanogenic bacteria required sediment 

for optimal growth. Organic substrates were used, and the enrichment cultures were seeded with 

one of the following: sewage sludge, black (anaerobic) mud, rumen contents, or animal wastes. 

Anaerobic conditions were maintained by placing the cultures in glass-stoppered bottles filled 

to capacity to omit air. The cultures were incubated at 30 to 37° C. 

Using his anaerobic enrichment techniques, Barker was able to isolate four distinct 

groups of methanogenic bacteria. These four groups were classified based on morphological and 

physiological characteristics ( Barker, 1936 ). The four groups are shown in Table 3. 



www.manaraa.com

27 

Table 3. Groups of methanogenic bacteria ( Barker, 1936 ) 

Organism Morphology Reactions Catalyzed 

Methanosarcina 
methanica 

Methanococcus 
Mazei n.sp. 

Methanobacterium 
Sohneenii. n.sp. 

Methanobacterium 
Qmerlianskii. 
n.sp. 

large spherical 
packets, gram 
variable, non-
sporeforming 

small, spherical 
gram variable, 
non-spore forming 

rod shaped joined 
in bundles, gram 
negative, non-
spore forming 

thin, bent rods, 
gram negative 

Fermentation of acetic 
and butyric acids to 
methane. 

Fermentation of acetic 
and butyric acids to 
methane. 

Fermentation of acetic 
and butyric acids to 
methane. 

Fermentation of ethyl 
alcohol to acetic acid 
and butyl alcohol to 
butyric acid with 
methane formation. 

Hungate and Smith perfected the isolation techniques for methanogens first developed 

by Barker, which they termed the roll-tube method ( Hungate, 1950; Smith and Hungate, 1958). 

In the roll-tube method, sterile tubes with butyl rubber stoppers were used. The head space of 

the tubes was replaced with a 80:20 ratio by volume mixture of hydrogen and carbon dioxide, 

respectively. Innoculating seed fluid was added to molten medium, and the medium was rolled 

onto the sides of the tubes in an ice-bath until cooled. Small methanogenic colonies were 
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observed on the surface of the media, which grew larger upon replenishment of the head space 

gas. 

Subsequent applications of the Hungate roll-tube technique, along with a better 

understanding of the nutritional requirements of methanogens resulted in the isolation of a total 

of thirteen different species of methanogens ( Mah and Smith, 1981 ). 

During the late 1970s and early 1980s, a significant amount of research was conducted 

on the examination of the 16 S ribosomal RNA (rRNA) oligonucleotide sequences as a 

classification tool for various microorganisms. During this time. Fox and others determined and 

compared the 16 S rRNA oligonucleotide sequences for a variety of methanogenic bacteria 

( Balch et al, 1979). It was discovered that methanogens had distinctly different rRNA 

sequences than other prokaryotes. The methanogens were reclassified based on the sequence 

homology of their 16 8 rRNA sequences. The reclassification scheme is shown in Table 4, and 

the characteristics of the different species of methanogens are shown in Table 5. 

The methanogens are a morphologically diverse group, consisting of such forms as long 

or short rods, small or large cocci, and various lancet and spirillum shapes. The majority of 

methanogens have a temperature optima for growth in the mesophilic range of 30 to 45° C. All 

methanogens are strict anaerobes and reduce carbon dioxide using molecular hydrogen to 



www.manaraa.com

Table 4 . Classification of methanogens ( Balch, 1979; Mah and Smith, 1981 ) 

Order Family Genus Species 

Methanomicrobiaceae 

Methanomicrobiales 

Methanogenium 

Methanospirillum 

M. cariaci 

M. marisnigri 

M. hungatei 

Methanobacteriales Methanobacteriaciae 
Methanobacterium 

M. formicicum 
M. bryantii 
M. thermoautotrophicum 

Methanobrevibacter 
M. rumiantium 
M. arboriphilus 
M. smithii 

Methanococcales Methanococcaceae Methanococcus M. vannielii 
M. voltae 

Methanosarcinaceae 

Methanomicrobium 

Methanosarcina 

M. mobile 

M. barkeri 
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Table 5. Properties of methanogens ( Balch, 1979; Mah and Smith, 1981 ) 

Species Temp. Optima Substrates Gram Stain Morphology 

M. formicicum 37-45° C Hj, formate + long rods, filaments 

M. brvantii 37-39° C + long rods, filaments 
M. thermoautotrophicum 6^-70° C Hn, carbon 

monoxide 
+ long rods, filaments 

M. rumiantium 37-39° C Hj, formate + short rods or lancet-
shaped cocci 

M. arboriphilus 37-39° C H2 + short rods or lancet-
shaped cocci 

M. smithii 37-39° C H;, formate + short rpds or lancet-
shaped cocci 

M. varmielii 36-40° C Hj, formate - regular to irregular 
smalTcocci 

M. voltae 36-40° C Hj, formate - regWar to irregular 
smalTcocci 

M. mobile 40° C Hj, formate - short, curved rods 
M. cariaci 20-25° C Hj, formate - small, irregular cocci 
M. marisnigri 20-25° C Hj, formate - small, irregular cocci 

M. hungatei 30-40° C Hj, formate - long,curved rod or 
spinllum 

M. barkeri 35-40° C 
MstêiSf-

+ irregular cocci in 
pacKets 

methylamines 
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produce methane. Some methanogens can use other simple substrates to produce methane 

including: formate, acetate, carbon monoxide, methanol, and methylamines ( Mah, Smith, and 

Baresi, 1978; Mah and Smith, 1981 ). The genus Methanosarcina is the most diverse in terms 

of number of growth substrates it can utilize. 

Methanogenic bacteria belong to the phylogenetic group of bacteria termed the 

"archaebacteria". Other archaebacteria include the genera Sulfolobus. Thermoplasma, and the 

Halobacteria. The archaebacteria lack true murein in their cell walls and contain unusual ether 

lipids rather than phospholipids in their cell membranes ( Gottschalk, 1988 ). 

The methanogens are widely distributed in nature, being most commonly found in anoxic 

environments where organic matter undergoes anaerobic decomposition ( Balch et al, 1979; Mah 

et al, 1977; Wolfe, 1971 ). The methanogenic bacteria are found in habitats where redox 

potential values are - 200 mV or less. 

Methanogens have been isolated from aquatic sediments such as ponds, marshes, 

swamps, lakes, rice fields, and hydrothermal deep-sea vents. Other habitats include the intestinal 

tract of man and animals ( especially the rumen of cattle ), sewage digesters, and landfills. 

Methanogens have been isolated in the hot springs of Yellowstone National Park, where they use 

geothermally produced hydrogen as a growth substrate ( Ziekus, 1977 ). 

Methanogens that reduce carbon dioxide using molecular hydrogen have been discovered 

in natural environments to often live in close association with rapid-growing hydrogen-

producing fermentative microorganisms ( Mah and Smith, 1981 ). In this close association, it 
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has been postulated that "interspecies hydrogen transfer" occurs between the fermentative 

microorganisms and the methanogens. This type of living arrangement is thought to be 

beneficial to both groups of bacteria. The removal of hydrogen by the methanogens allows 

otherwise thermodynamically unfavorable reactions to take place in the decomposition of 

organic matter. 

Methanogens are limited to simple growth substrates, and do not gain much energy from 

the metabolism of these compounds. The primary reactions of methane formation with their 

associated Gibbs free energy values are shown in Table 6 ( Gottschalk, 1986; Jones et al, 1987; 

Thauer, 1990). 

It is known that in microbial cells, approximately 50 kJ/mole are required to drive the 

synthesis of one ATP from ADP and inorganic phosphate ( Thauer, 1990 ). In a comparison of 

the above reactions, the reduction of carbon dioxide to form methane is more energetically 

favorable ( -131.0 kJ/mole CH4) than the acetoclastic formation of methane (-36.0 kJ/mole CH4). 

This may be one reason why the majority of methanogens can reduce carbon dioxide using 

hydrogen, and fewer species of methanogens have the ability to derive methane from acetate. 

Methanogenic archaebacteria are the only known microorganisms that couple methane 

synthesis to the generation of energy. Methanogens are known to use novel metabolic pathways 

for this purpose ( Jones et al, 1987 ). 
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Table 6. Reactions in methane formation 

Reaction AG° (kJ/mole CH4) 

CO; + 4H4-->CH4 + 2H2O -131.0 

CHjCOO- + H^-->CH4 + CO2 -36.0 

4CH3OH ~> 3CH4 + CO2 + 2H2O -107.0 

4HC00H ~> CH4 + 2H2O + 3CO2 -130.1 

4CH3NH/ + 2H2O ~> 3CH4 + CO2 + 4NH4^ -74.0 

4C0 2H2O ~> CH4 + 3CO2 -211.0 

In studies of their metabolic pathways, methanogens have been found to possess at least 

six unique cofactors and coenzymes which are necessary for methane formation during the 

reduction of carbon dioxide including: coenzyme F42Q, factor F430, coenzyme M, methanofuran, 

tetrahydromethanopterin, and factor B ( Gottschalk and Blaut, 1988 ). The structures of these 

unique cofactors and coenzymes are illustrated in Figure 2. 

The first of these unique compounds is coenzyme F420. It was observed that 

methanogenic bacteria possess a strong autofluoresence due to the presence of conenzyme F420 

under oxidizing conditions. This autofluoresence has been used as an identification tool for 

methanogens, and F420 has a spectral adsorption maxima at 420 nm ( Balch et al, 1979 ). F420 

is thought to be involved in the transfer of electrons from hydrogen to intermediates of methane 

synthesis ( DiMarco et al, 1990 ). 



www.manaraa.com

34 

O pi.ç fo-  o  coo 

I on 6ii All 6 

Coenzyme F420 

iis-cn,-rii,-so; 

coenzyme M 

II,Not- ll< 

H " COO-

Hi 
H, 
00. 

Factor F 
430 

o Y""' 9 î""' ? 6-Nii-t.ii-iai,)i-(:-Nii-ai-(Cii,)|-'"-Nii-icii,),-^ ^ocii,-^ 

-occ-yi 
ni-rno-
.ill,'),-coo- Methanofiiran 

CM,-Nil, 

I icon 

I I ,N  

H.MPT 

HS-CH,-Cll ,-CII,-CII,-CH,-CII,-C-NH-CH-CII-0-P-0 

COOH O' 

Factor B 

Figure 2. Unusal methanogenic coenzymes and cofactors 
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The second of these compounds unique to methanogens is factor F430. F430 was first 

isolated in 1977 as a non-fluorescent yellow compound from cell extracts of M. 

thermoautotrophicum ( DiMarco et al, 1990 ). It was later discovered that this microorganism 

required nickel for growth, and F430 has been found to be the major sink nickel ( Jones et al, 

1987 ). Factor F430 has a maximum spectral adsorbance at 430 nm, and is involved in the 

terminal steps of methane formation. 

The third unique cofactor of methanogens is methanofiiran ( MFR ). Methanofiiran was 

first discovered in M» thermoautotrophicum by Romesser and Wolfe in 1982 ( DiMarco et al, 

1990 ). It was observed that cultures of this organism that were depleted of soluble low 

molecular weight cofactors were unable to reduce carbon dioxide to methane. Methanofiiran was 

isolated as the cofactor responsible for the initial reduction of carbon dioxide in the synthesis of 

methane. 

The fourth unique cofactor is methanopterin (tetrahydromethanopterin), also known as 

H4MPT in the reduced form. H4MPT was also discovered in Mi thermoautotrophicum as a blue 

fluorescent compound in adsorption studies. H4MPT was first called factor F342 because it has 

a spectral adsorption maxima at 342 nm. H4MPT has been found to fimction in one-carbon 

transfers in the methane synthesis pathway during the reduction of carbon dioxide ( Jones et al, 

1987; DiMarco et al, 1990 ). H4MPT was studied extensively during the 1980s, and it was 

found that H4MPT can be synthesized from acetate by methanogens. 
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The fifth unique compound is coenzyme M. Coenzyme M was first discovered by 

McBride and Wolfe in a Methanobacterium strain in 1971 ( DiMarco et al, 1990 ). CoEnzyme 

M is required for methyl group transfers in the final steps of methanogenisis from the reduction 

of carbon dioxide. Coenzyme M has been found to be a required growth factor for 

Methanobrevibacter ruminantium. but most methanogens can independently synthesize 

coenzyme M ( Lovley et al, 1984 ). 

The sixth unique cofactor produced by methanogens is factor B, sometimes termed 

component B. Factor B was first isolated by Gunsalus and Wolfe from M. 

thermoautotrophicum in 1980 ( DiMarco et al, 1990 ). Factor B is involved in the final steps 

of methane formation during the reduction of carbon dioxide. 

With the discovery and isolation of these unique cofactors of methanogens, much work 

proceeded in identifying the metabolic pathways of methane generation. The most studied 

pathway has been the formation of methane from carbon dioxide using molecular hydrogen. 

The pathway of carbon dioxide reduction to methane as it is currently understood is 

shown in Figure 3. Three coenzymes including methanofuran, tetrahydromethanopterin 

(H4MPT), and coenzyme M are involved as one-carbon carriers in the sequential reduction of 

carbon dioxide to methane. The terminal reduction of the intermediates to methane involves 

two additional cofactors, component B ( factor B ), and factor F430. 

In the pathway of carbon dioxide reduction to methane, carbon dioxide is first reduced 

and fixed to methanofuran as a formyl group. In the second step, the formyl group is transferred 
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to tetrahydromethanopterin ( H4MPT ). The formyl group of the CHO-H4MPT complex is then 

converted through a series of reduction steps from methenyl-H^MPT to methylene-H^MPT, to 

methylene-H^MPT, and lastly to methyl-H^MPT ( DiSpirito, 1993; Gottschalk,1986; DiMarco 

et al, 1990 ). Factor F420 is thought to play an important role in these reactions as an electron 

carrier in the transfer of electrons from molecular hydrogen to the metabolic intermediates of 

methane synthesis. 

In the carbon dioxide reduction pathway, methyl-H^MPT next reacts with coenzyme M 

to yield methyl-coenzyme M. The termination reaction involves the reduction of the methyl-

coenzyme M complex with factor b, also known as HS-HTP or mercaptoheptanoyltheonine. 

Methane is released in this termination step. The by-product of the termination step is an 

oxidized coenzyme M-factor b complex, which is reduced with the help of factor F430 (DiMarco, 

1990 ). 

The second major metabolic pathway for methane production by methanogenic bacteria 

is the acetate pathway, which is used by acetoclastic methanogens. Approximately two-thirds 

of all methane production originates from the breakdown of acetate, and about one-third 

originates from the reduction of carbon dioxide ( Ferry,1992 ). 

Several of the acetoclastic methanogens include the Methanosarcina sp. and the 

Methanothrix §p.. Much less information is known about the acetate pathway as compared to 

the carbon dioxide reduction pathway for methanogenesis. 
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In the acetate pathway, the acetate molecule is first activated to acetyl CoA, and then is 

cleaved by the enzyme carbon monoxide dehydrogenase (CODH). The methyl group is reduced 

to methane using electrons derived from the oxidation of the carbonyl group acetate to carbon 

dioxide ( Ferry, 1992; Thauer, 1990 ). Coenzyme M has been identifiedas a carrier of the methyl 

group from acetate, and a coenzyme M methylreductaase system is thought to be responsible 

for the reduction of this methyl group to methane. 

Very little energy is derived from the cleavage of acetate molecules ( -31 kJ/mole 

methane ). If other substrates are available, methanogens may utilize acetate for biosynthesis 

reactions and form methane using a more energetically favorable pathway ( Jones et al, 1987 ). 

The complete metabolic pathways for the formation of methane from methanol, 

methylamines, carbon monoxide, and formate have not yet been fully understood. It has been 

determined in microorganisms that utilize methanol and methylamines, one-fourth of the 

substrate's methyl groups are oxidized to carbon dioxide, and three-fourths of the substrate's 

methyl groups are reduced to methane. Coenzyme M is thought to be involved as a methyl 

carrier during the reduction steps in the pathway to methane from methanol and methylamines 

( Gottschalk, 1986; Jones et al, 1990 ). The carrier involved in the oxidation of the methyl 

groups to carbon dioxide is unknown, although in Methanosarcina gg., type b cytochromes may 

be involved as electron carriers ( Jones et al, 1990 ). 
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Thermophilic Anaerobic Treatment 

Thermophilic bacteria are microorganisms which exhibit optimum growth at elevated 

temperatures. Thermophilic bacteria have been isolated from hot springs, as well as a variety 

of other geothermal environments. Thermophilic methanogens include such organisms as 

Methanobacteria thermoautotrophicum. isolated from the rumen of cattle, and Methanococcus 

iannaschii. which was isolated from deep-sea hypothermal vents ( Clark and Kelly, 1990 ). 

Bergy was the first to propose a classification scheme for thermophiles. He defined "true 

thermophiles" as bacteria which exhibit optimum growth ranging from 60° to 70° C, with a lower 

limit for growth ranging from 40° to 45° C ( Bergy, 1956 ). 

There has been an interest in thermophilic anaerobic digestion since the late 1920s when 

Rudolfs and Heukelekian conducted bench-scale tests at elevated temperatures on sewage sludge 

at the New Jersey Agricultural Experimental Station ( Rudolfs and Heukelekian, 1930 ). Since 

then, numerous experiments have been conducted in the laboratory as well as several plant-

scale studies. In the last twenty-years, thermophilic anaerobic processes have been investigated 

for the treatment of warm or hot industrial wastewaters. 

Thermophilic anaerobic digestion offers several potential advantages over conventional 

mesophilic operations including ( Buhr and Andrews, 1977; Shamskhorzani, 1989 ); 

1. Increased reaction rates with respect to the destruction of organic solids. 

2. Increased digestion efficiency, with a corresponding decrease in sludge 
production. 



www.manaraa.com

41 

3. Improved solids-liquid separation. 

4. Increased destruction of pathogenic microorganisms. 

5. Higher rate of digestion and methane production, resulting in shorter 
residence times and smaller reactor volumes. 

Possible disadvantages of the thermophilic anaerobic digestion process over conventional 

mesophilic systems include: 

1. Higher energy requirement for heating. 

2. Poorer effluent quality. 

3. Greater instability caused by greater sensitivity to potential temperature 
fluctuations. 

4. Production of odors at the higher temperature. 

Heukelekian and Rudolfs conducted one of the earliest studies on the comparative 

performance of thermophilic and mesophilic digestion of sewage solids in 1928 ( Rudolfs and 

Heukelekian, 1930 ). They conducted studies of the digestion of both fresh solids and solids 

which were seeded with ripe sludge at temperatures of 37°, 45°, and 55° C. It was observed that 

seeding was necessary for proper digestion at all temperatures. Digestion was complete within 

14 days for the seeded samples at 45° and 55° C, while digestion at 37° C took 26 days. 

Heukelekian and Rudolfs observed greater production of gas and odors at the higher 

temperatures. 
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Further experiments were conducted in the thermophilic digestion of sewage sludge by 

Heukelekian in 1930 ( Heukelekian, 1930 ). From his earlier experiments, it was known that 

seeding greatly shortened the time necessary for digestion. Heukelekian believed that the 

addition of seed sludge had a two-fold function, first, that of regulating the reaction of the 

digesting mixture, and second, to furnish the proper bacteria for the digestion process. 

Heukelekian observed that the optimum temperature for thermophilic digestion ranged 

from 50° to 60° C, and temperatures of 65° and 70° C greatly increased the time necessary for 

digestion. Ratios of seed to fresh solids tested ranged from 2:1 to 11.4:1 ( fresh solids:seed). 

It was observed that a 2:1 ratio of solids to seed was necessary for digestion at 50° C. It was also 

observed that the addition of lime and ammonium salts decreased the time necessary for 

complete digestion at 50° C from 14 days to 10 days. In a comparison of digestion at 50° C and 

22° C, it was observed that gas yields, volatile matter destruction, and decomposition of 

nitrogenous substances were greater at the thermophilic temperature. 

In 1934, Fair and Moore studied the time and rate of sludge digestion with respect to 

temperature ( Fair and Moore, 1934 ). It was noted that "... the range of 35° to 42° C seems to 

represent a region in which both thermophilic and non-thermophilic organisms work at a 

disadvantage. " At temperatures below 20° C, the time necessary for digestion was observed 

to increase dramatically. In this study, Fair and Moore reported four distinct temperature zones 

for digestion including: 
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1. Psycrophilic - below 10° C. 

2. Temperate Zone - below 28° C. 

3. Intermediate Zone - 28° C to 42° C. 

4. Thermophilic - above 42° C. 

In 1937, Fair and Moore investigated a wide range of temperatures for sludge digestion 

( Fair and Moore, 1937 ). They determined that the optimal temperatures for thermophilic 

treatment ranged from 52° to 54.5° C, and the optimal temperatures for mesophilic treatment 

ranged from 35° to 40°C. They measured the biogas produced at the experimental temperatures 

and determined the time of digestion as when the volume of gas produced was equivalent to 

90% of the biogas produced at 15° C. They concluded that the optimum mesophilic digestion 

time to be 22.7 days, and the optimum thermophilic digestion time to be 8.9 days. 

In 1948, Heukelekian and Kaplovsky studied the effect of temperature variation during 

thermophilic digestion. They were interested in characterizing the stability of digestion at 

thermophilic temperatures to determine the effects of a possible malfimction in heating 

equipment during the digestion process. 

Their experimental procedure involved making pulse changes from a digestion 

temperature of 50° C down to either 40° or 20° C. Some of the experimental mixtures were 

maintained at the lower temperatures, while other mixtures were transferred back to 50° C after 



www.manaraa.com

44 

2 or 5 days. They observed that digestion was adversely effected by the pulse change decrease 

in temperature. Temperature declines from 50° to 20° C resulted in a cessation of digestion, 

while digestion was merely slowed when the temperature was dropped from 50° to 40° C. They 

concluded that the flora responsible for digestion at 50° C was different from the flora 

responsible for digestion at 20° C. They also concluded that a short duration of temperature 

change had no lasting effect on subsequent digestion. 

Golueke ( 1958 ) studied the effects of temperature on the digestion of primary sludge 

at temperatures ranging from 30° to 65° C. In his studies, a detention time of 30 days and a 

volatile solids loading of 1.4 g VS/L/day were applied. He observed no appreciable difference 

in solids destruction or gas production at temperatures of 35° to 55° C at this long detention time 

and low volatile solids loading. 

Golueke made two important observations during this study. First, he observed that the 

sludge produced at 50° and 60° C had better dewatering characteristics as compared to the sludge 

produced at 30° to 45°. Secondly, it was also observed that the levels of volatile acids were 

considerably higher at the elevated temperatures. Volatile acids ranged from 82 ppm at 35° C 

to 2210 ppm at 65° C. There was an especially sharp increase in volatile acids from 500 ppm 

at 50° C to 2200 ppm at 55° C. Golueke postulated that the organisms responsible for the 

decomposition of volatile acids may not have been functioning efficiently at the higher 

temperatures. 
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In 1961, Malina (1961) studied the effects of temperature on the digestion of waste 

activated sludge at 52.5°, 42.5^, and at 32.5° C. In his experiment, daily feeding and gas 

recirculation mixing were employed. The volatile solids loading rate was 4.8 g/L/day at a 6 day 

detention time. Little difference in performance was observed for the three temperatures studied, 

with volatile matter destruction ranging from 42% at 52.5° C to 39% at 32.5° C. Gas production 

was observed to be less at 42.5° C than at either 32.5° or 52.5° C. Malina also observed higher 

production of volatile acids at higher digestion temperatures. 

Pohland and Bloodgood ( 1963 ) investigated the effect of overloading on anaerobic 

digestion at temperatures of 36°, 52.5°, and 60° C. In their experiment, they developed an 

extensive monitoring protocol which included the measurement of total and volatile solids, 

alkalinity, total and ammonia nitrogen, total volatile acids, pH, gas production, and carbon 

dioxide content of the biogas. This was one of the first studies which attempted to uncover the 

metabolic relationships between numerous factors which may affect the efficiency of the 

digestion process. 

Pohland and Bloodgood observed periods of retarded or severely retarded digestion 

during their experiment when volatile solids loadings were increased. At 60° C, gas production 

decreased and volatile acids increased at VS loading rates greater than 3.4 g VS/L/day ( 0.210 

# VS/ft^/day ). At 36° C, digester performance was adversely affected at VS loading rates greater 

than 4.5 g VS/L/day ( 0.280 # VS/ft^/day ). The best performance was observed at 52.5° C, were 
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digestion was not adversely affected until VS loading rates exceeded 5.1 g VS/L/day ( 0.315 # 

VS/ftVday ). 

Maly and Fadrus ( 1971 ) also studied the influence of temperature on anaerobic 

digestion. In their experiment the reactors retention times ranged from 105 to 186 days at 

temperatures of 20°, 30°, and 50° C. Because of the long retention times, there was little 

difference in the degree of decomposition at the end of the digestion process between the three 

temperatures. Although there was no appreciable difference in the degree of decomposition, 

there was a difference in the rate of gas production. They observed that gas production was 

highest at 50° C and lowest at 20° C. 

In 1984, Zinder studied the effect on the microbial population of a short-term 

temperature fluctuation during thermophilic digestion ( Zinder et al, 1984 ). During a digestion 

experiment, an accidental 24-hr temperature fluctuation occurred in which the temperatures 

shifted from 58° to 64° C. A large increase in acetate concentration and a sharp decrease in gas 

production was observed after the accidental temperature increase. Zinder hypothesized that 

the acetoclastic methanogens were damaged by the upward temperature shift. 

Anaerobic thermophilic digestion has been applied to a number of different industrial 

wastes, using several types of treatment systems. 

In 1975, Basu and Leclerc ( 1975 ) reported on a comparative study of the treatment of 

beet molasses distillery waste at thermophilic and mesophilic temperatures. The beet molasses 

waste contained a high concentration of organic matter, with a COD ranging from 11 to 17 g/L. 
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The waste also contained a number of potentially toxic substances including the heavy metals 

copper, zinc, lead, and a high concentration of sulfates. 

In their experiment, digestion temperatures of 35° and 55° C were used with COD loading 

rates ranging from 2 to 3.5 g/L/day, at a 10 day HRT. It was observed that there was little 

difference in treatment performance between the two temperatures. Mesophilic BOD removals 

ranged from 95.9 to 96.4% and thermophilic BOD removals ranged from 87.5 to 97.2% at 

organic loads up to 3.2 g/L/day. A drastic decline in performance was observed at the 3.5 

g/L/day loading for both the mesophilic and thermophilic digesters. They attributed the decline 

in performance to either the heavy metals or high sulfate concentrations in the waste. 

Chin and Wong studied the thermophilic digestion of a palm oil mill effluent using 

completely-mixed reactors ( Chin and Wong, 1983 ). A thermophilic temperature of 55° C was 

chosen because the raw palm oil mill effluent was a hot industrial waste, with temperatures 

ranging from 45° to 70° C. Successful thermophilic digestion of this waste was observed. COD 

reductions of 72% and 90% were achieved at HRTs of 5 and 15 days, respectively. 

In 1984, Schraa and Jewell reported on results of studies of an anaerobic attached-film 

expanded bed process for the treatment of a synthetic sucrose waste at 55° C. In their experiment 

diatomaceous earth was used as an attachment media, and the reactors were operated at an 

expansion rate of 10 to 20%. COD loading rates of 6.8 to 154 g/L/day were applied at HRTs of 

0.5 to 5.2 hrs. Total COD removals ranged from 90% at the 6.8 g COD/L/day loading to 22% 
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at the 154 g COD/L/day loading. They observed rapid attachment of a biofilm onto the media 

at the thermophilic temperature. 

In 1985, Wiegant et al reported on the thermophilic treatment of vinesse using both an 

upflow anaerobic sludge blanket reactor ( UASB ), and a semi-continuously fed digester. The 

vinesse used was described as a high-strength industrial wastewater produced in alcohol 

distilleries. They compared results with that of a mesophilic reactor operated at 30° C with 

vinesse over the same loading rates. 

Wiegant observed that the thermophilic reactors produced an effluent of similar quality 

as the effluent from the mesophilic reactor. It was observed, however, that propionate was the 

predominant volatile fatty acid produced in the thermophilic units, which was not observed in 

the reactor operated at 30° C. It was also observed that the granules in the thermophilic UASB 

reactor decreased in size from approximately 1-3 mm to 0.5 mm. The authors stated that 

although the granules decreased in size, overall reactor performance did not decline. The UASB 

units achieved SGOD reductions of 52 to 65% at COD loading rates of 17.2 to 83.6 g/L/day at 

HRTs ranging from 2.5 to 49 hrs. In Wiegant's opinion, the UASB reactor outperformed the 

semi-continuously fed digesters, although a direct numerical performance comparison was not 

included in the report. 

Also in 1985, Rudd et al reported on a comparison study of anaerobic fluidized-bed 

reactors operated at mesophilic ( 36° to 39° C ) and thermophilic ( 57° to 60° C ) temperatures. 

A synthetic meat waste supplemented with trace nutrients was used in the experiment. The 
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synthetic meat waste was formulated to simulate an abattoir wastestream. The mesophilic units 

were observed to outperform the thermophilic units. At a COD loading rate of 4.6 g/L/day, 

mesophilic TCOD removals ranged from 72 to 80%, and thermophilic TCOD removals ranged 

from 45 to 68%, at HRTs ranging from 1.5 to 13 hrs. It was observed that the optimum HRT 

ranged from 6 to 13 hrs at both temperatures. 

In 1988, Puhakka et al reported on the anaerobic treatment of a combined primary and 

secondary pulp mill sludge in semicontinuous-flow reactors at thermophilic and mesophilic 

temperatures. They observed no advantages of thermophilic digestion. The thermophilic 

digestion was observed to produce lower VSS reductions, lower gas production, and a poorer 

quality effluent. In their experiment, they attempted to acclimate a mesophilic seed to the 

thermophilic temperatures for a period of one month prior to the experimental testing. Perhaps 

better results for the thermophilic reactor may have been achieved with a longer acclimation 

period. 

There have been several full-scale studies on anaerobic digestion at thermophilic 

temperatures. 

Fisher and Greene ( 1945 ) reported on plant-scale studies of thermophilic and 

mesophilic anaerobic digestion of primary sludge at Aurora, Illinois in 1931. In this early study, 

mixing was not employed and the digesters were stratified. Higher solids destruction was 

observed in the thermophilic digester at a detention time of 12.9 days and an organic loading of 
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0.45 kg volatile matter/mVday ( 0.028 Ib/tf/day ). It was also observed that the supernatant from 

the thermophilic digester was of lower quality than that of the mesophilic digester. 

Fisher and Greene ( 1945 ) also studied thermophilic and mesophilic digestion at Jackson, 

Michigan from 1942 to 1944. The digesters were fed a mixture of one part primary sludge to 

three parts of waste activated sludge, and a three-stage digestion process was used. The two 

parallel, three-tank systems consisted of two primary tanks, heated to 29° and 52° C, 

respectively, followed by two unheated secondary and tertiary tanks. The digesters were not 

mixed, and supernatant was withdrawn from the tertiary tanks. The detention time for both 

systems was 27 days, and the applied organic loading was 0.53 kg volatile matter/mVday ( 0.033 

Ib/tf/day ). The thermophilic three-tank system outperformed the mesophilic three-tank system. 

Higher volatile solids destruction and a higher quality supernatant were observed for the 

thermophilic system. 

The most extensive plant-scale test of thermophilic anaerobic digestion in the United 

States was conducted at the Los Angeles Hyperion plant from 1953 to 1957 ( Garber, 

1954,1957). Temperatures of 29°, 38°, and 49° C were studied at detention times of 12 and 24 

days at organic loadings of 2.1 and 3.8 kg volatile solids/mVday. The digesters were fed a 

mixture of approximately 70% primary sludge and 30% waste activated sludge. The digesters 

were heated by direct steam injection, and mixing was employed using draft tubes. 

It was observed that the thermophilic digesters achieved approximately 54% volatile 

solids destruction at both detention times, which was equal to or better than the digesters 
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performance at the lower temperatures. It was also observed that the volatile acids concentration 

was higher in the thermophilic digester, with concentrations ranging from 600 to 800 mg/L. 

Volatile acid concentrations at 29° and 38° C ranged from 100 to 200 mg/L. 

In Garber's opinion, the major advantage of the thermophilic process was the production 

of a sludge with improved dewatering characteristics. Lower coagulant demand and higher filter 

yields were observed for the thermophilic sludge. 

In 1972, Garber et al conducted renewed thermophilic digestion plant-scale tests at the 

Hyperion plant ( Garber et al, 1975 ). Digestion temperatures of 46° to 51° C were used. They 

observed sharp increased in volatile acids whenever the digestion temperatures proached 52° C. 

Similar dewatering characteristics in terms of filtration yields were again observed for the 

thermophilic sludge. It was also observed that the thermophilic filtrate was of poorer quality 

than that of the mesophilic filtrate, with higher levels of ether solubles, COD, nitrogen, 

phosphorus, and heavy metals. 

Popova and Bolotina ( 1964 ) reported on the use of thermophilic anaerobic digestion in 

a 260 MGD wastewater treatment plant in what was formerly Moscow, U.S.S.R. They reported 

that in 1958, the mesophilic digesters were converted to a thermophilic temperature. This 

process modification permitted a decrease in detention time from 18 to 9 days, and an increase 

in organic loading from 1.65 up to 3.5 kg volatile matter/mVday. After the conversion, organic 

solids destructions were approximately 50%. Popova and Bolotina considered the primary 

advantage of the thermophilic process to be the production of a sanitary sludge, free of 

pathogens. 
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Anaerobic Fixed-Film Processes 

The development of anaerobic fixed-film processes was a major breakthrough which 

allowed anaerobic treatment to be competitive with aerobic treatment processes. One major 

disadvantage of anaerobic treatment has been the relative slow growth of the methanogenic 

bacteria. Anaerobic fixed-film processes involve the use of an attachment media, which allows 

for a greater retention of the biomass. This provides for long SRTs and the ability to apply 

shorter HRTs since the biomass is anchored in the reactor. Anaerobic fixed-film processes have 

been successfully applied for the treatment of a variety of industrial waste streams. 

The pioneering work on the anaerobic filter fixed-film process was performed at 

Stanford University by Young for his doctoral research under McCarty. The results of Young's 

dissertation work were first presented at the Purdue Industrial Waste Conference ( Young and 

McCarty, 1967 ). 

In this first study two substrates were used, a mixture of proteins and carbohydrates, and 

also a mixture of acetic and propionic acid. Waste strengths ranged firom 1500 to 6000 mg/L at 

HRTs ranging from 4.5 to 72 hrs, resulting in COD loadings ranging ftom 0.43 to 3.4 g/L/day. 

Treatment success was based primarily on COD removals in the system. COD removals ranged 

from a high of 93.4% at a 72 hr HRT and a COD loading of 0.43 g/L/day, to a low of 36.7% at 

a 4.5 hr HRT and a COD loading of 3.4 g/L/day. 

In a comparison of the anaerobic filter to other anaerobic treatment processes. Young and 

McCarty stated several observations and advantages including; 
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1. The anaerobic filter is ideal for the treatment of soluble waste streams. 

2. Biological solids accumulate in the anaerobic filter leading to long solids 
retention times ( SRTs ), and low effluent total suspended solids ( TSS ). 

3. Because of the long SRTs possible, dilute wastes can be successfully treated at 
nominal temperatures ( < 37° ). 

4. One major advantage of the anaerobic filter over other anaerobic systems is the 
ability of the filter to retain solids without an external clarifier. 

In 1977, Schroeder outlined some of the possible disadvantages of anaerobic filters 

including the following: 

1. Anaerobic filters have potential for clogging of the media with waste 
streams high in suspended solids. 

2. The filter must be cleaned or changed after prolonged operation due to 
channelization of flow caused by heavy biomass growth. 

3. Filter cleaning techniques have not been developed, and backwashing is not 
feasible due to the large size of the units. 

Shortly after Young and McCarty's early work on the anaerobic filter, Plummer 

applied the anaerobic filter treatment process to an actual food processing waste which consisted 

mainly of carbohydrates ( Plummer et al, 1968 ). Instead of using rock packing media, a plastic 

ring and saddle media was employed. The plastic media provided for a much higher filter bed 

porosity ( 70% porosity vs. 42% ) than was the case of Young's quartzite stone media. The 

higher bed porosity left more physical space in the reactor for the retention of anaerobic biomass. 
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Plummer's filters were operated mesophilically at COD loading rates ranging firom 1.6 

to 10.3 g/L/day at HRTs ranging firom 13 to 83 hrs. COD removals ranged from 41% to 93.5%. 

Plummer suggested effluent liquid recycling to avoid the possibility of liquid short-circuiting 

in the filter. 

The anaerobic filter process was applied to a pharmaceutical waste by Jennett and 

Dennis in 1975. The pharmaceutical waste was low in suspended solids, with an average COD 

of 16000 mg/L. The reactors were fiilly-packed with 1.0 to 1.5 inch gravel, and had a 14 L 

empty-bed volume. HRTs of 12 to 48 hr were studied at 37° C, and applied COD loadings 

ranged from 0.2 to 3.5 g/L/day. COD removal efficiencies ranged from 94 to 98%. An 

important observation made by Jennett and Dermis was that bacteria collected on and between 

the interstitial spaces of the gravel media. 

Chain and DeWalle in 1977 utilized an anaerobic filter for the treatment of acidic 

landfill leachate which had a pH of 5.4 and a COD of 54000 mg/L. They practiced effluent 

liquid recycle in order to help neutralize the pH of the acidic leachate. They also used plastic 

media which provided for a high filter bed porosity of 94%. 

A high-strength carbohydrate was treated with an anaerobic filter, as reported by 

Mosey in 1978. A plastic media with a porosity of 90% was used in the reactors. The COD 

removal efficiency was 89% at a 4 day HRT at a operation temperature of 35° C. Hydraulic 

retention times of less than 4 days were not applied because of concern for potential wash­

out of bacteria from the filter. The high performance of the anaerobic filter was demonstrated 

in this early study. 
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The anaerobic filter was used to treat a shellfish processing waste water by Hudson 

in 1978. Two different types of packing media were used including readily-available oyster 

shells and stone media, resulting in bed porosities of 82% and 53%, respectively. This was an 

important study which illustrated the effect of filter bed porosity on treatment performance. The 

oyster shell media filter provided superior treatment as compared to the stone media, with COD 

removals 81% and 33%, respectively. 

In 1982, Dague reported on the use of the anaerobic filter process for the treatment of 

a high-strength grain processing waste. Temperatures of 22° and 35° C at applied COD loadings 

of 2.4 g/L/day were used in the comparative study. COD removal efficiencies were 75% at 22° 

C, and 90% at 35° C. When the organic loading was increased to 5.6 g COD/L/day for the 35° 

C filter it was observed that treatment performance declined due to pH fluctuations in the raw 

waste. 

Witt et al reported on the fiill-scale anaerobic treatment of a guar industrial waste 

( Witt et ai, 1979 ). The guar wastewater contained soluble gums and propylene glycol. The 

36000 ( 1019 m^ ) filter was operated at 37° C in the upflow mode with effluent recycle. The 

raw waste water was pre-heated to 37° C using direct steam injection and heat exchangers which 

recovered heat firom the filter liquid effluent. The filter was operated at a 30 hr HRT with an 

average COD loading rate of 0.47 Ib/flVday ( 7.4 g/L/day ). The system was successfully 

operated as a pretreatment process with a COD removal rate of 60%. 

In 1980, Switzenbaum and Jewell reported on a new type of fixed-film treatment 

system termed the anaerobic, attached-film expanded bed reactor ( AAFEB ). The attachment 
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media used were 500 micron porous aluminum oxide beads. A high biomass concentration was 

achieved by attachment of microorganisms onto the media which provided for long SRTs. The 

AAFEB process was demonstrated to be effective in treating low-strength waste waters while 

operating at low temperatures and short HRTs. The aluminum oxide beads were not 

recommended for full-scale applications in waste treatment because of its high cost. 

In 1981, Jewell and Morris used the AAFEB process to study instantaneous shock 

effects of changes in treatment temperature and organic loading on the system. They used a 

synthetic waste water composed mainly of glucose, supplemented with nutrients such as nitrogen 

and phosphorus, yeast extract, and sodium bicarbonate. Two reactors were operated in parallel 

at a 5 hr HRT. For both units, treatment temperatures were varied over 42 days in the following 

sequence: 22.5°,25.3'',19.7°, 28.1°, 16.9°, 32.2°, 12.8°, 35°, 10°, and 22.5° C. In the first reactor, 

temperature only was varied, and influent substrate concentration was maintained at 500 mg/L. 

In the second reactor, influent substrate concentration was varied in addition to temperature 

from 50 mg/L at 10° C to 950 mg/L at 35° C. 

Jewell and Morris anticipated that a temperature change from 35° to 10° C would 

decrease reactor performance in terms of COD removals and suspended solids concentrations 

in the effluent for the reactors. They observed little difference in reactor performance after the 

temperature shift. The reactors were allowed to operate for only 80 hr after the shift before the 

experimental temperature was again changed. Perhaps greater differences in performance would 

have been observed if the reactors were allowed to operate at one experimental condition for a 

reasonable length of time to acclimate the microorganisms to the new temperature. 
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In 1981, Kennedy and van den Berg reported on the effects of overloading on the 

performance of anaerobic fixed-film reactors at 25° and 35° C. A chemical industry waste water 

was used in which the organic matter consisted mainly of short chain volatile fatty acids. During 

the overloading studies, the reactors were operated at COD loading rates of 14 and 17.9 g/L/day 

and HRTs of 1 and 0.78 days at 25° and 35° C, respectively. The units were shock-loaded for 

24 hr, after which time the organic loading rates were returned to 60 to 70% of the steady-state 

loading of the reactors. At 25° C, shock loadings ranged from 16 to 60 g COD/L/day, and at 35° 

C, shock loadings ranged from 28 to 90 g COD/L/day. It was observed that the fixed-film 

reactors could handle the severe shock overloadings, and normal reactor performance was 

reestablished 12 to 48 hr after overloading was stopped. 

In 1982, Dahab investigated the effect of media design on anaerobic filter performance 

for his dissertation work at Iowa State University. He determined that larger media with larger 

pore openings but with less specific surface area was superior to smaller media with smaller pore 

openings with higher specific surface area. Dahab concluded that the larger media was superior 

since the majority of the treatment was being performed by the microorganisms held in 

suspension in the interstifial spaces rather than the microorganisms which were attached onto the 

filter media. 

The successful treatment of a low strength domestic waste water using an anaerobic 

filter was reported by Kobayashi et al in 1983. A tricking filter media was used which had a 

high specific surface area. Temperatures of 20°, 25°, and 35° C were used at a COD loading of 



www.manaraa.com

58 

0.02 Ib/ftVday. The filter performance was superior at 25° and 35° C, with COD removals of 

79%. Performance declined at the lower temperature, with COD removals of 65% at 20° C. 

In 1984, Guiot and van den Berg described a modified anaerobic filter, termed the 

upflow blanket filter ( UBF ), or hybrid filter. In their design, the bottom two-thirds of the 

reactor consisted of an open space where a sludge blanket formed. The top one-third of the 

reactor contained conventional plastic packing media of high porosity. They tested a synthetic 

waste consisting mainly of sucrose in which applied COD loadings of up to 22 g/L/day resulting 

in 95% soluble COD removal efficiencies. 

The effect of a series of severe shocks to an anaerobic filter was studied by Caine et al 

in 1990. The anaerobic filter was operated with a dairy effluent substrate under steady state 

conditions at an HRT of 16 hr and a COD loading of 7.8 g/L/day at 35° C. The experiment then 

involved exposing the reactor to a series of 8-hr shocks including turning off the heating 

equipment, terminating caustic addition for pH control, doubling the substrate concentration, and 

reducing the HRT from 16 to 9 hr. 

It was observed that low temperature and low pH shocks resulted in small transient 

changes in reactor performance, but long-term stability was unaffected. During the low 

temperature experiment the temperature in the reactor dropped to 25.5° C, and during the low 

pH shock, the raw waste water pH dropped to 5.3. Organic shock produced a 24% reduction in 

COD removal, primarily caused by an increased amount of suspended solids in the effluent. 

After the organic shock experiment, steady-state performance was reestablished 24 hours after 

the shock period. During the hydraulic shock, it was observed that a large quantity of solids was 
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washed out of the reactor with the effluent. After the hydraulic shock steady-state was also 

reestablished. The authors concluded that the anaerobic filter was quite successful in 

withstanding a variety of different types of short-term shocks that might be experienced in a full-

scale operation. 

Chiang investigated the effect of reactor configuration on the performance of the 

anaerobic filter for his doctoral work at Iowa State University under Dague ( Chaing and Dague, 

1992 ). They observed no significant difference in the reactor performance based on height to 

diameter ratio. Based on tracer studies, they also discovered that at high organic loading rates, 

gas production in the reactor causes significant mixing which allows anaerobic filters to operate 

like a completely-mixed reactor. 

Two-Phase Anaerobic Treatment 

A review of the literature revealed no two-stage anaerobic treatment processes in which 

a thermophilic anaerobic filter was connected in series to a mesophilic anaerobic filter, except 

the Temperature-Phased Anaerobic Biofilter Process under development at Iowa State 

University. The majority of the relevant literature described two-stage systems designed for 

enhanced phase optimization. 

In 1930, Buswell reported on a two-stage digestion process for the anaerobic treatment 

of wastewater sludges. By employing a two-stage process, the detention time in the first stage 

was shortened, and the second stage completed the digestion process. It was observed that the 

majority of stabilization occurred in the first stage. 
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In 1971, Pohland and Ghosh first proposed a two-phase system for the separation of the 

acidogenic and methanogenic phases of anaerobic treatment. 

Their system consisted of two completely-mixed reactors connected in series for waste 

stabilization. They noted that by separating the acid-forming microorganisms from the 

methanogenic microorganisms, optimal growth environments could be maintained for each 

population. By the use of kinetic control using the appropriate dilution rates, they proposed that 

the rapidly-growing acidogens would predominate in the first stage, forming mainly volatile fatty 

acids. The slower-growing methanogens would be washed out of the first stage and predominate 

in the second stage where they could convert volatile acids produced in the first stage to 

methane. They noted the key to successful treatment was dependant on near-complete phase 

separation. 

In 1973, El-Shafie and Bloodgood reported on a study in which six anaerobic filters 

were connected in series for the treatment of Metrecal ( vanilla flavor ) at 30° C. 

In their system, the six reactors were filled with 1 to 1.5 inch gravel media and had a 

working volume of 2.6 L each. The Metrecal wastestream had a COD of 10000 mg/L, and the 

COD loading on the lead"filter was 41 g/L/day. The retention time in each of the six filters was 

3 hr, resulting in a system HRT of 18 hr for the combined six filter system. System COD 

removals averages 76%. El-Shafie and Bloodgood observed an exponential decrease in 

biological activity from the first to the last filter in the system. 

In 1983, a two-phase system treating a food canning wastewater was reported by Nhuan 

et al. The mesophilic system consisted of an intermittently-mixed first stage and an upflow 
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anaerobic sludge blanket second stage. The first stage was operated as an acidogenic reactor, 

with short detention times and short SRTs. The second stage was operated as a methanogenic 

reactor with a long SRT. They observed in the two-stage system that they system was flexible 

in terms of methane production. Without adverse long-term effects, the system successfully 

performed to produce high methane production during normal weekly plant operation, and 

reduced methane production on the weekends, when methane was routinely flared. 

A full-scale two-stage system for the treatment of wastewater sludges at the Rockaway 

Wastewater Treatment Plant was reported by Torpey et al in 1984. The main objectives of the 

study were to find an adequate system to reduce quantities of sludge and to destroy pathogens. 

This study was prompted by a federal mandate to cease ocean dumping of wastewater treatment 

sludge. The two-stage system included a mesophilic digester operated at 36° C, connected in 

series to a second stage thermophilic digester operated at 50° C. It was observed that the two-

stage system achieved a volatile solids destruction of 60%, with substantial reduction in 

pathogens. 

Hiraoka et al ( 1984 ) reported on the thermal pretreatment of waste activated sludge in 

a pilot-scale wastewater treatment plant. Thermal pretreatment temperatures of 60° to 100° C 

were applied to thickened waste activated sludge for 2 hr. The waste activated sludge was then 

combined with thickened primary sludge, and the mixture was digested in a 30 L egg-shaped 

digester. Two digesters were operated in parallel, one receiving the thermally pretreated sludge 

mixture, and the other receiving an unaltered primary and waste activated sludge mixture. They 

observed an increase in gas production in excess of 30% for the system employing thermal 
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pretreatment. There was no economic analysis reported as to whether the amount of excess gas 

production would offset the energy costs for thermal pretreatment. 

In 1985, Ghosh reported on a comparison study of single-stage and two-stage 

completely-mixed digesters for the anaerobic treatment of sewage sludge. Two-stage 

temperature variations of mesophilic to mesophilic, mesophilic to thermophilic, and thermophilic 

to thermophilic were applied. Single-stage units were operated at both the mesophilic and the 

thermophilic temperatures. This research did not investigate a two-stage system with a 

thermophilic first-stage and a mesophilic second stage. HRTs of 15, 7, and 3 days were applied. 

Ghosh concluded that the two-stage process was superior to single-stage digestion 

based on gas yields and production rates, and volatile solids destruction. He also observed 

enhanced stability of the two-stage system relative to the single-stage system as system loadings 

and hydraulic dilution rates were increased. 

A comparative study of a completely-mixed reactor with a two-stage upflow anaerobic 

sludge blanket ( UASB ) at thermophilic temperatures was reported by Wiegant in 1986. It had 

been previously observed that propionate degradation was often impaired at thermophilic 

temperatures. Wiegant proposed that the cause of the inhibited degradation of propionate to be 

high levels of hydrogen gas. 

Wiegant designed the two-stage system in order to physically separate the hydrogen-

producing microorganisms in the first stage from the hydrogen-consuming methanogens in the 

second stage. It was observed that significantly better results were obtained with the two-stage 

system. At COD loadings ranging from 20 to 50 g/L/day, COD removals were 10 to 13% higher 
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in the two-stage system. Wiegant attributed the better performance in the two-stage system to 

the removal of biogas ( and hydrogen ) which evolved in the first stage. 

In 1986, Tanaka and Matsuo reported on the anaerobic treatment of a dilute milk 

wastestream using a two-stage system. The system consisted of a continuously-mixed reactor 

connected in series to a methanogenic anaerobic filter, both operated at 37° C. At an HRT of 4.4 

days, the two-stage system achieved a 92% reduction in COD at a COD loading of 1.5 g/L/day. 

They observed improved phase separation when the HRT in the CSTR was reduced from 2 days 

to 1 day. In an analysis of the acidogenic first-stage effluent, it was observed that carbohydrates 

were more readily degraded than proteins or lipids. 

Single and two-stage digestion of cheese whey using rotating biological contact reactors 

was reported by Lo and Liao in 1986. The two-stage system outperformed the single-stage 

system based on total methane production. Lo and Liao concluded that the two-stage digestion 

of cheese whey could be used successfully for rapid waste treatment and energy production. 

In 1987, Verrier et al reported on a comparison study of single and two-stage systems 

for the anaerobic treatment of vegetable solid wastes. The one-stage systems were completely-

mixed units operated at both thermophilic and mesophilic temperatures. The two-stage systems 

consisted of a thermophilic CSTR first-stage connected in series to a mesophilic anaerobic filter, 

and a mesophilic CSTR first-stage connected in series to a mesophilic anaerobic filter. Phase 

separation under mesophilic conditions resulted in greater methane production than was obtained 

in the single-stage mesophilic CSTR. Under thermophilic conditions, there was no observed 
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advantage of two-stage operation over a single-stage thermophilic CSTR. For the two-stage 

systems, it was observed that thermophilic liquefaction in the first stage resulted in the 

production of even-chained volatile fatty acids and ethanol, which were easily converted to 

methane in the second stage. For the mesophilic two-stage system, mesophilic liquefaction in 

the first stage resulted in the production of the more difficultly degraded odd-chained fatty acids 

such as propionate and valerate. 

Howerton and Young investigated a unique two-stage cyclic operation of anaerobic 

filters using a synthetic alcohol stillage waste ( Howerton and Young, 1987 ). The stillage waste 

consisted mainly of ethanol and sucrose. In their system, two 370 L anaerobic filters were 

connected in series, with the first reactor termed the lead reactor, and the second reactor termed 

the follow reactor. As a part of their study, after 136 days of continuous operation of the filters 

at 30° C, the waste flow was reversed, with the follow reactor becoming the lead reactor. At 

COD loadings of 4 and 8 g/L/day, using system HRTs of 36 and 18 hrs, COD removals ranged 

from 98 to 99%.. 

Chang et al.reported on the anaerobic digestion of wastewater sludge using a two-phase 

process ( Chang et al, 1989 ). The wastewater sludge was a 55:45 mixture by volume of primary 

and waste activated sludge. The first stage consisted of a mesophilic CSTR operated at a 2-day 

HRT, and the second stage consisted of a thermophilic anaerobic filter operated at an 8-day 

HRT, for an overall system HRT of 10 days. In excess of 40% volatile solids destructions were 

achieved at volatile solids loadings ranging from 2.7 to 3.5 g/L/day. Chang reported that typical 
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volatile solids loadings for single-stage systems ranged from 0.7 to 2.5 g/L/day. Total gas 

production was observed to be slightly higher in the two-stage system as compared to previous 

studies of single-stage sludge digestion at similar loadings. 

In 1990, Hanaki et al compared single-stage and two-stage anaerobic treatment of an 

oily cafeteria wastewater at 20° C. Similar to previous research, the two-stage system consisted 

of a CSTR reactor connected in series to an anaerobic filter. The cafeteria wastewater contained 

approximately 30% lipids, and had a COD ranging from 1300 to 2500 mg/L. Slightly better 

COD removals were observed in the single-stage filter as compared to the two-stage system. 

Aoki and Kawase reported on the use of the two-stage process at a thermophilic 

temperature for the digestion of sewage sludge in 1990. A thermal conditioning pretreatment 

step was applied at 90° C for 1 hr using a proteolytic enzyme. The two-stage system consisted 

of a 70° C CSTR connected in series to a 55° C anaerobic filter. The system achieved a 58% 

volatile solids destruction at a system HRT of 3.7 days. 

McDougal et al reported on a comparative study of single and two-stage anaerobic 

digestion of a synthetic coffee wastewater in 1993. The single-stage system consisted of an 

upflow anaerobic filter operated at 37° C. The two-stage system consisted of a first-stage 

completely-mixed acidification reactor followed by a upflow anaerobic filter operated at 37° C. 

The first stage was operated at both 37° and 55° C during different phases of the experiment to 

study the effect of temperature on acidification. Higher levels of volatile fatty acids were 

produced in the mesophilic acidification unit. It was also observed that the lower levels of 
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volatile fatty acids produced at the thermophilic temperature in the first-stage did not adversely 

effect the two-stage treatment performance. At the mesophilic temperature, the two-phase 

system outperformed the single-stage anaerobic filter. At a COD loading of 3.33 g/L/day, total 

COD removals were 78% for the two-stage system, as compared to 65% for the single-stage 

filter. 

Temperature-Phased Anaerobic Biofilter Development 

At Iowa State University, Harris conducted a comparative study of mesophilic and 

thermophilic anaerobic filters for his doctoral research under Dague ( Harris, 1992; Harris and 

Dague, 1993 ). 

The four laboratory-scale anaerobic filters had clean-bed volumes of 16.8 liters each, 

with bed porosities of 0.90. Non-fat dried milk was used as the substrate. The mesophilic and 

thermophilic filters were operated at 35° C and 55° C, respectively. Harris observed that the 

thermophilic reactors produced a lower quality effluent than the mesophilic reactors at high 

organic loadings. 

As a result of the poor quality effluent fi"om the thermophilic biofiters, it was decided 

by Harris and Dague to operate the reactors in series ( thermophilic followed by mesophilic ) to 

determine whether such operation would result in increased reniovals of the high 

concentrations of volatile acids in the thermophilic effluent. 
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Overall system HRTs of 24 and 48 hrs were studied at system COD loadings of 4.13 to 

24.75 g/L/day. Superior treatment performance was observed in this preliminary study at both 

HRTs. System total COD removals in excess of 90% were achieved at system loadings up to 

20 g COD/L/day. Overall two-stage performance declined at the 24.75 g/L/day loading. 



www.manaraa.com

68 

IV. EXPERIMENTAL APPROACH 

Reactor Construction 

The reactors were obtained from a previous laboratory experiment and were constructed 

of Plexiglas by the Engineering Research Institute Machine Shop at Iowa State University. 

A total of six reactors were constructed, which consisted of 2-ft sections. Three 

separate TPAB systems were constructed for this work. The various size ratios chosen for the 

thermophilic and mesophilic stages were guided, in part, to make use of the existing reactor 

sections. Each of the three TPAB systems consisted of a thermophilic first stage connected in 

series to a mesophilic second stage. 

The three TPAB systems each had a total thermophilic plus mesophilic reactor height 

of eight feet. Two additional 1-ft reactor sections were constructed with identical cross-

sectional dimensions as the existing 2-ft sections. This allowed assembly of the reactor sections 

to provide for system thermophilic to mesophilic size ratios of 1:7, 1:3, and 1:1 for the three 

TPAB systems, as illustrated in Figure 4. In the first TPAB system, the thermophilic unit was 

a 1-ft reactor followed by a 7-ft mesophilic reactor. The second TPAB system consisted of a 

2-ft thermophilic unit followed by a 6-ft mesophilic reactor. The third TPAB system consisted 

of a 4-ft thermophilic unit followed by a 4-ft mesophilic unit. The total clean-bed volumes for 

the three TPAB systems were nearly identical, ranging fi-om 22.3 to 22.7 L. 
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Figure 4. Three experimental TPAB systems 
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Each of the six Plexiglas reactors included a bottom plate, a top plate, and a bottom feed 

diffuser plate, as illustrated in Figure 5. Figure 5 shows the six-foot Plexiglas reactor which 

consisted of three two-foot sections. The top plate is illustrated in Figure 6. The bottom plate 

is shown in Figure 7. The bottom feed diffuser plate, which was designed to allow for an even 

upflow distribution of liquid feed, is illustrated in Figure 8. 

The 2-ftt and 1-ft reactor sections were identical in cross-sectional dimensions. The 

cylinders had an outer diameter of 12.7 cm ( 5 in ), an inside diameter of 11.43 cm ( 4.5 in ), and 

a wall thickness of 0.64 cm ( 0.25 in). Each cylinder had a top flange ( Figure 9 ) with a 20.32 

cm ( 8 in ) outside diameter, and an inside diameter of 12.7 cm ( 5 in ). The flange was 

equipped with a groove to accept a 0.318 cm (0.125 in) rubber o-ring. The o-ring allowed the 

reactor sections to be sealed when bolted together. 

The bottom of the reactor cylinders consisted of a one-piece flange and deflector, as 

shown in Figure 10. The outside diameter was 20.32 cm ( 8 in ) with a 8.89 cm ( 3.5 in ) inside 

opening. The inside opening was beveled at a 45 degree angle to reduce wall effects. The 

deflector also served as a support for a 0.635 x 0.635 cm ( 0.25 x 0.25 in ) steel mesh screen 

for media support. 

The reactor cylinders were equipped at their midpoint with a 2.54 cm ( 1 in ) solid 

Plexiglas cylinder mounting which contained a 0.32 cm (0.125 in) boring which allowed 
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for the insertion of a thermocouple and compression fitting. The boreholes were sealed with a 

brass plug in the mesophilic reactors. 

The reactor cylinders were also equipped with sampling ports which were located 7.62 

cm ( 3 in ) above the thermocouple ports. The sampling port consisted of a 0.64 cm ( 3 in ) 

diameter stainless steel tube, 1.5.24 cm ( 6 in ) in length. The sampling ports were supported by 

a 2.54 cm ( 1 in ) solid Plexiglas cylinder which was bored to accept the sampling tube. 

The top plate design for each of the six reactors is illustrated in Figure 6. The top plate 

consisted of a 20.32 cm ( 8 in ) diameter Plexiglas plate which was 1.27 cm ( 0.5 in ) thick. A 

1.59 cm ( 0.625 in ) hole was drilled in the center of the top flange plate to accept a 0.95 cm 

( 0.375 in ) brass pipe adapter. The pipe adapter allowed tygon tubing to be coimected to the 

top of the reactor. The top plate was bolted to the top flange using twelve 0.952 x 5.08 cm 

( 0.375 X 2.0 in ) hex-head bolts. 

Figure 8 illustrates the bottom feed diffuser plates for the reactors. The feed diffuser 

plates were 20.32 cm ( 8 in ) in diameter, and 2.54 cm ( 1 in ) thick Plexiglas. The bottom 

diffuser was designed to ensure the uniform distribution of influent feed across the bottom of the 

reactor. There were four 2.54 cm ( 1 in ) diameter distribution orifices for even feed distribution. 

The bottom diffuser plate was equipped with a compression fitting 1.91 cm ( 0.75 in ) from the 

bottom of the plate to allow for the insertion of a 0.64 cm ( 0.25 in ) diameter stainless steel 

liquid feed inlet tube, 15.24 cm ( 6 in ) in length. The feed inlet tube was installed such that the 

influent feed entered into the center of the diffuser plate. 
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The bottom plate was a 20.32 cm ( 8 in ) diameter and 1.27 cm ( 0.5 in ) thick Plexiglas 

plate. The plate contained twelve 0.952 cm ( 0.375 in ) boreholes which allowed the bottom 

plate to be bolted to the bottom diffuser plate. The bottom section required 7.62 cm ( 3 in ) long 

bolts to secure the bottom plate, the diffuser plate, and the cylinder flange. 

Media 

The reactors were fully-packed with 1.59 cm ( 0.625 in ) plastic Flexiring media ( Koch 

Engineering Company, Inc. Wichita, Kansas ). Reactor bed porosity was 0.89. The media had 

a specific surface area of 344 mVm\ as reported by the manufacturer. Clean-bed volumes for 

the three TPAB systems, and for the individual reactors are shown in Table 7. The clean-bed 

volume is the liquid volume in the reactor packed with clean media. Clean-bed volumes were 

determined using tap water prior to the start-up of the reactors. 

Table 7. Measured clean-bed volumes (CBV) for the TPAB systems 

System Total CBV Thermo.CBV Meso.CBV 

TPAB 1 (1:7 ratio 
thermophilic/mesophilic) 22.7 L 2.9 L 19.8 L 

TPAB 2 (1:3 ratio 
thermophilic/mesophilic) 22.3 L 5.6 L 16.7 L 

TPAB 3 (1:1 ratio 
thermophilic/mesophilic) 22.4 L 11.2 L 11.2 L 
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Temperature Control 

The reactors were operated at two temperatures, thermophilic (56° C) in the first 

stage, and mesophilic (35° C) in the second stage. The mesophilic temperature was 

maintained by placing the reactors in a 35° C constant temperature room. The temperature 

was monitored daily with a wet-bulb thermometer. 

The thermophilic units were contained within specially constructed insulated boxes 

which were constructed from Celotex insulation board. Each chamber was heated with a 

silicon rubber heat tape suspended from the ceiling of the boxes. The thermophilic 

temperatures were monitored and controlled using thermocouples which were inserted 

internally into the midsection of each reactor. The thermocouples were connected to Bamett 

Temperature Controllers which activated the heat tape to provide a constant internal reactor 

temperature of 56° C. 

The insulated thermophilic chambers were also equipped with industrial exhaust fans 

to maintain a constant air temperature within the chambers. The fans were operated 

continuously in a downflow mode during the experiment. 

Feed System 

The feed system for the three TPAB systems is illustrated in Figure 11. The feed 

substrate was contained in four 22 L carboys housed in a refrigerator that was maintained 
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at 2° to 8° C. The reactors were fed through tygon tubing extended from the refrigerator to 

the reactors in the constant temperature room. The feed tubing was contained within a 

1.91cm ( 0.75 in ) PVC pipe, with cold water circulating through the piping to prevent 

spoilage of the substrate. 

The cold water recirculation system was maintained by coiling approximately 7.6 

meters ( 25 ft ) of tygon tubing through the freezer compartment of the refrigerator. The 

tubing was cormected to the 1.91 cm ( 0.75 in ) PVC pipe. The water was recirculated using 

a Masterflex peristaltic pump with a size 18 pump head operated at a constant speed of 100 

rpm. 

The feed was delivered to the three first-stage thermophilic reactors using a 

Masterflex peristaltic pump fitted with three size 16 pump heads. The Masterflex pump 

operated in the range of 1 to 100 rpm and was equipped with a ten-turn potentiometer speed 

controller. The ten-turn potentiometer speed controller allowed for precise control of the 

liquid feed flow rate to the reactors. The feed pump was calibrated weekly, and also when 

the pump head tubing was replaced during routine system maintenance. 

The three mesophilic reactors were fed from three continuously-mixed and sealed 

3.5 L holding tanks. The holding tanks collected and stored the liquid effluent from the 

thermophilic first-stages. The three mesophilic units were fed using a Masterflex peristaltic 

pump fitted with three size 16 pump heads. The pump was equipped with a ten-turn 

potentiometer speed controller for accurate flow rate control. The mesophilic feed pump was 
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calibrated weekly, and also when the pump head tubing was replaced during routine 

maintenance. 

Gas Measurement System 

The gas measuremeiit system is illustrated in Figure 12. The gas measurement 

system included a gas/liquid separation bottle, a backflow trap, and a Rebel Wet Tip gas 

meter (Rebel Point Wet Tip Gas Meter Co., Nashville, TN). The biogas from each of the six 

reactors was measured separately. The gas/liquid separation bottles were designed to 

separate the biogas from the liquid reactor effluent. The gas/liquid stream was introduced 

into the top of a 4-L aspirator bottle. A liquid level was maintained within the aspirator 

bottle to prevent biogas from escaping with the liquid effluent. The biogas escaped through 

a tygon tubing line at the top of the aspirator bottle and entered a water backflow trap. The 

liquid effluent was discharged through the bottom of the aspirator bottle. 

Biogas bubbled through the water backflow trap and into the gas meter. The meters 

were calibrated to tip once for every 100 ml of gas that entered through an orifice in the 

bottom of the meter. The meters were equipped with a magnet and digital counting 

mechanism which advanced one number for every tip of the meter. Biogas measurements 

were recorded daily. 
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Substrate 

The substrate used for this study was a soluble synthetic waste, non-fat dry milk 

(NFDM). The NFDM was supplemented with trace minerals essential for balanced microbial 

growth. NFDM is a complex material which is high in protein and carbohydrates, and contained 

sufficient nitrogen for microbial growth. The NFDM used was a stable substrate, with a COD 

of 1.03 g/ g NFDM, and a five-day biochemical oxygen demand (BOD,) of 0.49 g BOD/ g 

NFDM. The properties of the NFDM are shown in Table 8, and follow those reported by Chiang 

(1988). 

To ensure balanced microbial growth, trace minerals were added to the NFDM solution. 

The trace minerals were added at a rate of 0.1 ml/ g NFDM from a stock solution described in 

Table 9. The trace mineral solution was previously used by Chiang (1988) and Harris (1992) 

and was shown to be provide for proper anaerobic microbial growth. 

The substrate was prepared daily by the addition of the NFDM to the City of Ames tap 

water. The desired waste strength was achieved by adding an appropriate amount of weighed 

NFDM. The NFDM, the trace minerals, and a portion of the tap water was mixed using a 

kitchen blender (Hamilton Beach, Inc.). The blended material was added to the 22 L carboys. 

Sodium bicarbonate was added when required to maintain the pH of the reactor effluent 

between 6.5 and 7.1. Additional tap water was added using a 2 L graduated cylinder. The 

resulting NFDM feed mixture was stirred to ensure a uniform solution prior to feeding the 

reactors. The carboys were placed in the refrigerator to prevent spoilage during the feeding 

cycle. 
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Table 8. Properties of the non-fat dry milk (NFDM) 

Parameter Value Units Reference 

COD 1.03 g/g NFDM 

BOD; 0.49 g/g NFDM 

TOC 0.21 g/g NFDM 

TKN 5.4 g/lOOgNFDM 

T-PO4 2.2 g/lOOgNFDM 

Fat <1.0 g/lOO g NFDM 

Lactose 51.0 g/lOOgNFDM 

Protein >30.0 g/lOOgNFDM 

Ash 8.2 % 

Trace Minerals 

Fe 4.6 ppm of NFDM 

Ni 1.0 ppm of NFDM 

Co 0.8 ppm of NFDM 

Mo 3.0 ppm of NFDM 

Zn 15.0 ppm of NFDM 

Harris 

Harris 

Chiang 

Chiang 

Chaing 

Swiss Vall< 

Swiss Valh 

Swiss Valh 

Swiss Valh 

Chiang 

Chiang 

Chiang 

Chiang 

Chiang 
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Table 9. Recipe for the trace mineral stock solution 

Chemical Compound Quantity 

FeCl^^HzO 35.60 g/L 

ZnClz 2.08 g/L 

NiCl^ôHjO 4.05 g/L 

C0CI2 6H2O 4.04 g/L 

MnClz^HzO 3.61 g/L 
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Experimental Set-up 

The experimental set-up consisted of three thermophilic reactors and three 

mesophilic reactors. A total of three different TPAB systems were used. One TPAB system 

included one thermophilic unit connected in series to one mesophilic unit. 

Figure 13 illustrates a typical TPAB system set-up. The reactors were fully-packed 

with filter media and were operated in the upflow mode. The thermophilic and mesophilic 

reactors all had the same components, except for the temperature controls and 

thermocouples for the thermophilic reactors. The NFDM feed was stored in carboys in a 

refrigerator outside the constant temperature room. 

The feed left the storage carbouy through a 0.95 cm ( 0.375 in ) tygon tube which was 

inside a 1.91 cm ( 0.75 in ) PVC pipe cold water jacket. The feed was drawn through the 

tubing using a Masterflex pump decribed previously. The NFDM feed entered the 

thermophilic units through the stainless steel tube into the bottom of the reactors. 

The liquid effluent from the reactors exited from the top of the reactors into tygon 

tubing. The liquid effluent was split using a t-type polypropylene tubing connector. One-

half of the effluent was- recycled back to the influent feed line of the reactor using a 

Masterflex peristaltic pump fitted with size 16 pumpheads. The recycle was maintained at 

100% of the influent feed rate resulting in the same liquid pumping rate for the feed and 

recycle pumps. There were a total of two recycle peristalic pumps, each fitted with 

three size 16 pumpheads for the six reactors. One of the peristaltic pumps recycled the 

liquid effluent for the three thermophilic reactors, and the second peristaltic pump recycled 
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Figure 13. TPAB experimental set-up 
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liquid effluent for the three mesophilic reactors. The two recycle pumps were calibrated using 

a graduated cylinder by measuring the liquid flow over a 5- minute time period. 

Two existing plywood platforms was used for the experimental set-up in the constant 

temperature room. The platforms were constructed from 3/4 in plywood and 2 x 4 in lumber. 

The first platform was 2-ft deep and 5-ft long. This platform was also equipped with a shelf at 

the 5-ft level with 9 in circular boreholes that encircled the taller reactors to prevent tipping. 

The second platform was 2-ft deep and 3-ft long. The second platform was equipped with a 

shelf at the 3-ft level. One in boreholes were placed in the second platform to allow placement 

of the liquid effluent tygon tubing lines. The 1-ft and 2-ft thermophilic reactors were housed 

on the second platform. The 4-ft thermophilic reactor, and the three mesophilic reactors were 

housed on the first platform. Aspirator bottles, gas meters, temperature controllers, and 

backflow traps were placed on shelves above the two platforms. The feed and recycle pumps 

were placed near the reactor bases on the platforms. The three, 3.5 L holding tanks were placed 

on the floor in front of the taller platform. 

The reactor cylinders were completely filled with the 5/8 in Flexiring media. The 

cylinders were then tapped on the ground to allow for maximum compaction of the plastic 

media. The cylinder sections were then hex-bolted together with the top plate, the bottom plate, 

and the bottom feed diffuser plate. One thermocouple was placed near the midpoint in each of 

the three thermophilic reactors in the appropriate ports. The mesophilic and thermophilic 

sampling ports were fitted with tygon tubing and square screw clamps. 
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The thermophilic units were placed in the specially constructed insulated housings. The 

silicon heat tape was secured to suspend from the ceilings of the insulated housings. One air 

circulating fan was suspended from the ceiling of each of the insulated housings. A 1-in 

borehole was placed in the top of each of the insulated boxes to allow for a tygon tubing 

effluent line to extend up from the top of each reactor. The insulated boxes were sealed with 

duct tape. 

Hydraulic Retention Times (HRTs) 

There were three separate TPAB systems operated during the experiment. A TPAB 

system included a thermophilic first stage and a mesophilic second stage. System HRTs of 24, 

36, and 48 hrs were evaluated for the three TPAB systems. 

Identical liquid pumping rates were used for the thermophilic and mesophilic reactors 

at each system HRT. The variation in reactor volume resulted in the ability to evaluate a range 

of HRTs for the thermophilic and mesophilic phases. Thermophilic phase HRTs ranged from 

3 to 24 hrs, and mesophilic phase HRTs ranged from 12 to 42 hrs, as shown in Table 10. 
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Table 10. Hydraulic retention times for the three TPAB systems 

System HRT Thermophilic HRT Mesophilic HRT 
hrs hrs (volume,L)* hrs (volume,L)* 

3(2.9) 21 (19.8) 
24 6 (5.6) 18(16.7) 

12(11.2) 12(11.2) 

4.5 (2.9) 31.5(19.8) 
36 9(5.60 27(16.7) 

18(11.2) 18(11.2) 

6(2.9) 42 (19.8) 
48 12 (5.6) 36(16.7) 

24(11.2) 24(11.2) 

' Reactor volumes shown in parentheses. 

Loading Rates 

The loading rates were based on total COD. The NFDM had a TCOD of 1.03 g 

COD/g NFDM. The NFDM feed solution was prepared by adding the appropriate amount of 

NFDM to the feed stock. As a verification procedure, the COD test was routinely performed on 

the NFDM feed stock. 

System organic loadings are shown in Table 11. System organic loadings of 1 g 

COD/L/day to 10 g COD/L/day (influent feed concentration 2.0 g/L to 20.0 g/L) were evaluated 

for the 48 hr and 36 hr system HRTs. System loadings of 10 g COD/L/day to 16 g COD/L/day 

(influent feed concentration 10.0 g/L to 16.0 g/L) were evaluated for the 24 hr system HRT. 
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Table 11. COD loadings for the three TPAB systems and for the thermophilic first stages 

First-Phase Thermophilic Organic Loadings 
System g COD/L/day 

Loading 
g COD/L/day No. 1 (2.9L) No. 2 (5.6L) No. 3(11.2L) 

1 8 4 2 

2 16 8 4 

3 24 12 6 

4 32 16 8 

5 40 20 10 

6 48 24 12 

7 56 28 14 

8 64 32 16 

9 72 36 18 

10 80 40 20 

11 88 44 22 

12 96 48 24 

13 104 52 26 

14 112 56 28 

15 120 60 30 

16 128 64 32 
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The thermophilic and mesophilic phases for the three TPAB systems were of different 

size ratios which enabled variation of the COD load on the first stage thermophilic reactors 

while feeding exactly the same volume and substrate COD concentration to each system. 

System loadings on the three TPAB systems of 1 g COD/L/day to 16 g COD/L/day resulted in 

effective loadings on the thermophilic first phases ranging firom 2 g COD/L/day to 128 g 

COD/L/day, also illustrated in Table 11. 

Temperature of Operation 

The thermophilic first phases of the three TPAB systems were operated at 56° C. The 

meosphilic second phases of the TPAB systems were operated at 35° C. The literature shows that 

these operating temperatures are appropriate for both the thermophilic and mesophilic reactors. 

It was also a research goal to compare the results of this experiment with a preliminary study on 

the TPAB process conducted at Iowa State University (Harris, 1992). 

Sampling and Analysis 

The performance of the systems were monitored using several parameters. Samples 

were collected for the analysis of TCOD, SCOD, VFA, pH, solids, ammonia, gas composition, 

and alkalinity. 
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Samples were collected and analyzed at least once a week for each parameter, and more 

frequently during quasi-steady state periods. As defined by this experiment, quasi-steady state 

conditions were reached when the measured methane production for the reactors varied less than 

five percent fi-om the average daily methane production during that period. 

pH The pH of the reactor effluents were measured several times a week with a Model 

4500 Altex digital pH meter. The pH probe was a standard glass gel-encased membrane probe. 

The pH meter was calibrated daily with two standard buffers with a pH 4.0 and 7.0. 

During sample analysis approximately 20 ml of sample was collected and analyzed immediately 

to avoid pH changes due to release of carbon dioxide. The pH probe was washed with distilled 

water after use and stored in pH 4.0 standard buffer. 

Chemical Oxygen Demand The chemical oxygen demand ( COD ) procedure followed 

was Standard Method 508 B Oxygen Demand ( Chemical, closed reflux, titration method ). The 

prinicple of the COD test is to measure the oxygen equivalent of organic matter which can be 

chemically oxidized using a strong oxidizing agent. Potassium dichromate was used as the 

oxidizing agent. 

In the modified reflux method, the reaction must take place at elevated temperatures in 

the presence of a strong acid and a catalyst. Silver sulfate was the catalyst. The catalyst is 

needed to convert organic compounds which are difficult to chemically oxidize. 

The digestion vessels were 20 by 150 mm culture tubes which required the following 

quantities: 
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Sample 5 ml 

Potassium dichromate 3 ml 

Sulfuric acid with catalyst 7 ml 

The total volume in each tube was 15 ml. The maximum oxygen measuring capacity 

was 480 mg Oj/L. Most samples required dilution using volumetric flasks. Duplicates of each 

sample were performed to increase the reliability of the results. 

The COD was calculated using the following equation: 

COD, mg/L = (A-B) x M x 8000 x D 

ml of sample 

where, 

A = ml of ferrous ammonium sulfate (FAS) used for the blank 

B = ml FAS used for the sample 

M = molarity of FAS titrant 

D = dilution factor of the sample 

Total COD (TCOD) and soluble COD (SCOD) were performed on each sample collected. 

The TCOD was performed on a well-mixed portion of the sample as collected. The SCOD was 

performed on the filtrate from the samples which passed through a 4.25 cm, 1.2 pm pore size 
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GF/C glass filter paper. A vacuum apparatus, which included buchner funnels and glass vacuum 

flasks, was used to aid in filtering samples for the SCOD test. 

At each quasi-steady state, a data point was collected for each organic loading on the 

reactors. During collection of the data point, TCOD and SCOD tests were performed every other 

day for a total of three COD testing days. The COD data obtained fi-om the runs was averaged 

and combined into one COD data point. 

Solids Analyses Solids were another important parameter monitored. Solids 

analyses were performed once for each COD loading/HRT data point. The solids tests were 

performed when the reactors were in quasi-steady state. 

Total and volatile suspended solids were performed according to Standard Methods, 

sections 209 C and 209 D, respectively, with the following modifications: 

1. Filter papers were not washed prior to use. 

2. A 10 ml sample size was used. 

3. Only one series of drying, cooling, desiccating, and weighing was performed for 
each sample. 

For the solids analysis, 9- cm glass fiber filter papers were used. Disposible aluminum 

weighing dishes were used to hold the filter papers. The solids were run in duplicate on the 

effluent from each of the reactors for each data point. The following equations were used to 

determine the total and volatile suspended solids (TSS and VSS): 
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TSS, mg/L = ( A-B )(1000 mg/g)(1000 ml/L) 

sample volume, ml 

where, 

A = weight of filter + weighing dish + residue,g, 

B = weight of filter + weighing dish,g. 

VSS, mg/L = ( A-C)(1000mg/g)(1000ml/L) 

sample volume, ml 

where, 

A = weight of filter + dish + residue before ignition,g, 

C = weight of filter + dish + residue after ignition,g. 

Gas Analvsis Gas analyses on the biogas was performed twice weekly using a Gow-

Mac 69-350 Gas Chromatograph (GC). The boigas was analyzed for CH4, N;, and CO;. A 

standard curve was developed during each sampling period using a calibration gas containing 

70% CH4, 25% CO;, and 5% Nj. The specifications for the gas chromatograph are shown in 

Table 12. 

The biogas samples were removed from gas sampling ports located in the gas line for 

each reactor. The samples were obtained using a 1-ml gas-lock syringe fitted with a 22 gauge 

standard side-port needle. Three samples were used to flush the syringe, and the fourth sample 
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Table 12. GC operating parameters 

Component 

Gas Chromatograph 
Column 

packing 
packing size 
temperature 

Carrier Gas 
flowrate 

Detector 
temperature 

Injection block temperature 
Sample size 
Data station 

Specification 

Gow-Mac 69-350 

Chromosorb P 
80/100 mesh 
65° C 
helium 
60 ml/min 
thermal conductivity 
150° C 
100° C 
0.90 ml 
Maxima 

was taken for analysis. A 0.90 ml sample size was used throughout the experiment. The 

samples were run in duplicate. 

Volatile Fatty Acids The volatile fatty acids were analyzed by the Analytical Services 

Laboratory in the Department of Civil and Construction Engineering. The analyses were 

performed on a Hewlett Packard 5730 Gas Chromatograph (GC). The operating parameters for 

the GC are shown in Table 13. 

Effluent samples from each reactor were taken during quasi-steady state at each data point 

for VFA analysis. The samples were filtered twice through 1.2 nm pore size GF/C glass fiber 

filter papers using a vacuum apparatus to remove particulate debris prior to analysis. The 
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Table 13. GC operating parameters for VFA analysis 

Component Specification 

Gas Chromatograph 
Column 

packing 

detection limit 
temperature 

Carrier gas 
flowrate 

Detector 
hydrogen: air flowrate 
temperature 

Injection port temperature 
Sample size 
Data station 

Hewlett Packard 5730A 

GP Carbopack C/0.3% Carbowax 
20 M/0.1% H3PO4 
ppm level 
120° C 
helium 
50 ml/min 
FID 
40:240 ml/min 
200° C 
200° C 

1 uL 
Maxima 

samples were then acidified to a pH of 2.0 using phosphoric acid and frozen for one to six days 

prior to analysis. 

Ammonia Ammonia measurements were performed once for each COD loading/HRT 

data point for the reactors. Effluent samples were taken from each reactor immediately prior to 

analysis to prevent ammonia volatilization. Ammonia was determined using an Orion ammonia 

probe and a Model 4500 Altex digital pH meter operated in the mV mode. 
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A calibration curve was developed to determine the ammonia concentration of the reactor 

effluent. Three standard solutions of 10, 100, and 1000 mg/L (as N) of ammonium chloride 

were used to determine the calibration curve. 

For both the standards and the reactor effluents, a 25- ml sample size was used. The 25 ml 

sample was placed in a 50-ml beaker, and 2 ml of 0.1 N NaOH was added to each sample. The 

ammonia probe was placed into the beaker, and the sample was continuously stirred. The 

minimum mV readings were taken from the samples and the standards. 

The ammonia values of the samples were determined by plotting the standards on a 

calibration curve using a regression analysis. For the standards, the mV reading was graphed 

on the X-axis, and the log of the concentration of the standard was placed on the Y-axis. The 

equation of a straight line was used to determine the ammonia concentrations of the unknowns 

as follows: 

Y = mX + b 

where, 

Y = dependant variable ( log of standard concentration ) 

m = slope of regression line 

X = indépendant variable (mV reading) 

b = y intercept 
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The ammonia concentrations of the samples were determined using the following formula: 

(M X sample mv reading + b) 

Ammonia (mg/L as N) = 10 

Alkalinity The total alkalinity for the reactor effluents were determined once per COD 

loading/HRT data point using Standard Method 403. A 25-ml sample of the effluent stream 

was used for all determinations. The samples were titrated with 0.1 N sulfuric acid to the 

endpoint at a pH of 4.5. 

The following equation was used to determine the total alkalinity of the samples: 

A X N X 50,000 
Total alkalinity, mg/L = 

sample size, ml 

where, 

A = volume of standard acid used, ml, 

N = Normality of standard acid. 
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V. START-UP 

Before the experiment was initiated, the reactors were filled with packing media and 

cormected together. The clean-bed volumes were measured for the six reactors using tap 

water. The three TPAB systems had clean-bed volumes of 22.2 L, 22.3 L, and 22.7 L, and 

a clean filter bed porosity of 89%. 

The systems were assembled together using varying diameters of tygon tubing to 

connect the reactors to the rest of the experimental set-up, including the feed lines, recycle 

lines, aspirator bottles, backflow traps, gas sampling ports, and the gas meters. 

The reactors were seeded with primary anaerobic digester sludge from the Ames, 

Iowa, Water Pollution Control Plant. The seed was first screened through a 1 x 1 mm screen, 

and diluted with the City of Ames tap water in a 3:1 ratio of seed to tap water. The reactors 

were allowed to sit for 12 hrs before feeding was initiated to allow for the removal of any 

dissolved oxygen which may have entered the systems. 

The temperature in the thermophilic units was increased to 56° C over a 12-hr time 

period. The thermophilic phases were initially loaded at a rate of 0.6 to 1.2 g COD/L/day 

at HRTs of 1.15 to 2.5 days for the first 2 weeks. After 2 weeks, organic loadings were 

increased and HRTs were decreased during the next 45 days. 

During the acclimation period for the thermophilic reactors, the mesophilic reactors 

were fed an interim feed substrate of 50% NFDM, 30% propionic acid, and 20% acetic acid 
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(as COD) to acclimate the mesophilic reactors. After the 45-day acclimation period for the 

thermophilic units, the thermophilic effluent was fed into the mesophilic units. 

Throughout the start-up phase, the feed was supplemented with alkalinity in the form 

of sodium bicarbonate to ensure adequate buffer, and to maintain the effluent pH of the 

reactors between 6.5 and 7.1. 

After the thermophilic and mesophilic reactors were connected in series, the three 

TPAB systems were started at an initial load of 1 g COD/L/day for the system, at a system 

HRTof48hrs. 
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VI. RESULTS AND DISCUSSION 

System Analysis 

The three TPAB systems were compared based on both total and soluble COD removals 

at the three system HRTs of 24, 36, and 48 hrs. Methane production was also monitored and 

daily methane productions were averaged during pseudoequilibrium at each COD loading data 

point. Volatile acids and ammonia levels were also measured for each COD loading data point. 

COD Removal 

The performance data for the three TPAB systems based on both total and soluble COD 

removals at system HRTs of 48, 36, and 24 hrs are presented in Tables 14 through 22. 

Throughout the research, the COD removal results were used as a primary indicator of TPAB 

performance. The total and soluble COD removal results for the three TPAB systems are 

illustrated graphically in Figures 14 through 40. 

Figures 14 through 19 show performance in terms of COD removal for the three different 

TPAB systems at the 48.hr system ( thermophilic plus mesophilic ) HRT. 

Figures 14 and 15 illustrate the total and soluble COD removal performance for TPAB 

1 ( 1:7 volume ratio thermophilic:mesophilic ). The 48-hr system HRT resulted in a 

thermophilic stage HRT of 6 hrs and a mesophilic stage HRT of 42 hrs. The mesophilic 
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Table 14. TPAB 1 (1:7 volume ratio) performance at the 48 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

1 67.2 77.7 79.3 80.7 93.2 95.7 

2 65.2 83.3 93.7 94.0 97.8 99.0 

3 67.9 84.5 95.6 94.8 98.6 99.2 

4 58.5 85.0 95.2 95.3 98.0 99.3 

5 63.0 85.7 92.7 95.1 97.3 99.3 

6 60.2 77.3 92.7 96.9 97.1 99.3 

7 50.3 78.0 93.4 97.7 96.7 99.5 

8 38.8 76.1 90.5 96.7 94.2 99.2 

9 27.0 54.0 95.9 97.8 97.0 99.0 

10 19.9 43.0 91.9 97.7 93.5 98.7 
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Table 15. TPAB 1 (1:7 volume ratio) performance at the 36 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

2 30.1 59.1 92.1 95.4 94.5 98.1 

3 32.2 60.0 94.9 96.7 96.6 98.7 

5 27.1 56.1 93.0 98.2 94.9 99.2 

7 35.6 59.4 96.3 98.0 97.6 99.2 

9 38.3 62.0 95.9 97.4 97.5 99.0 

Table 16. TPAB 1 (1:7 volume ratio) performance at the 24 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

10 20.7 35.2 87.1 96.6 89.8 97.8 

11 28.9 53.6 92.3 96.1 94.5 98.2 

12 28.9 52.1 94.4 96.2 96.0 98.2 

13 2L3 50.0 92.5 97.8 94.1 98.9 

14 20.2 50.9 94.9 97.9 95.9. 99.0 

15 0.0 38.7 94.8 98.7 94.8 99.2 

16 14.3 46.1 95.2 98.3 95.9 99.1 
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Table 17. TPAB 2 (1:3 volume ratio) performance at the 48 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

1 69.2 . 79.3 70.8 87.0 91.0 97.3 

2 83.1 89.8 81.1 86.3 96.8 98.6 

3 75.1 84.1 88.8 93.7 97.2 99.0 

4 75.8 90.4 93.4 92.7 98.4 99.3 

5 78.1 87.8 92.2 94.3 98.3 99.3 

6 81.4 91.9 87.6 92.6 97.7 99.4 

7 86.0 92.7 83.6 93.2 98.6 99.5 

8 71.0 86.6 82.0 95.5 94.9 99.4 

9 65.0 86.0 94.3 92.9 98.0 99.0 

10 62.3 76.1 94.0 97.5 97.7 99.4 
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Table 18. TPAB 2 (1:3 volume ratio) performance at the 36 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

2 59.2 72.2 90.0 94.6 95.9 98.5 

3 64.3 82.8 90.2 91.9 96.5 98.6 

5 67.6 85.9 89.1 93.6 96.5 99.1 

7 62.2 77.2 92.3 95.6 97.1 99.0 

9 64.2 70.8 89.7 96.2 96.3 98.9 

Table 19. TPAB 2 (1:3 volume ratio) performance at the 24 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 
g COD/L/day Total Soluble Total Soluble Total Soluble 

10 57.2 73.0 83.4 94.8 92.9 98.6 

11 55.0 79.8 86.0 93.1 93.7 98.6 

12 48.6 73.7 83.1 92.0 91.3 97.9 

13 42.6 69.3 86.6 92.6 92.3 97.5 

14 53.7 78.3 89.8 92.6 95.3 98.4 

15 53.4 82.0 89.0 92.8 94.9 98.7 

16 53.2 77.0 89.7 93.5 95.2 98.5 
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Table 20. TPAB 3 (1:1 volume ratio) performance at the 48 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

1 62.8 83.9 83.6 82.6 93.9 97.2 

2 84.9 91.5 79.4 81.2 96.9 98.4 

3 77.9 91.8 89.6 85.4 97.7 98.8 

4 81.7 93.4 88.5 87.9 97.9 99.2 

5 82.1 90.9 88.8 88.9 98.0 99.1 

6 85.0 94.1 90.0 88.1 98.5 99.3 

7 83.8 90.8 86.4 90.2 97.8 99.1 

8 86.2 93.7 81.2 87.3 97.4 99.2 

9 86.3 94.7 73.8 83.0 96.6 99.1 

10 87.0 92.0 71.5 90.0 96.3 99.2 
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Table 21. TPAB 3(1:1 volume ratio) performance at the 36 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

2 53.3 66.5 81.8 92.2 91.5 97.4 

3 68.1 81.1 83.7 89.9 94.8 98.1 

5 82.8 94.1 71.5 79.7 95.1 98.8 

7 80.0 94.0 72.5 83.3 94.5 99.0 

9 74.7 89.6 73.1 81.7 93.2 98.1 

Table 22. TPAB 3(1:1 volume ratio) performance at the 24 hr HRT 

TCOD and SCOD Removals 
System Thermophilic Mesophilic System 
Loadings Removals,% Removals,% Removals,% 

g COD/L/day Total Soluble Total Soluble Total Soluble 

10 69.3 80.8 749.2 91.1 93.6 98.3 

11 74.7 86.4 70.8 90.4 92.6 98.7 

12 76.5 87.4 67.6 85.7 92.4 98.2 

13 77.4 88.8 65.9 81.3 92.3 97.9 

14 75.6 87.5 73.4 77.6 93.5 97.2 

15 73.0 86.1 80.0 86.3 94.6 98.1 

16 77.0 63.3 69.1 92.3 92.9 97.2 
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TCOD and SCOD removals were in excess of 90% at system loads above 2 g COD/L/day. 

The thermophilic TCOD and SCOD first-stage removals declined above the 6 g COD/L/day 

system loading. The 6 g COD/L/day system loading corresponded to an effective first-stage 

COD loading of 48 g/L/day. Although first-stage performance declined above the 6 g 

COD/L/day loading, the overall two-stage system continued to perform well with TCOD 

and SCOD removals of 93.2 to 98.6%, and 75.7 to 99.3 %, respectively. 

Figures 16 and 17 illustrate the TCOD and SCOD removal performance for TPAB 

2 ( 1:3 volume ratio thermophilic.mesophilic ). The 48-hr system HRT resulted in a 

thermophilic first-stage HRT of 12 hrs, and a mesophilic second-stage HRT of 36 hrs. The 

mesophilic TCOD and SCOD removals were in excess of 80% at COD system loadings 

above 2 g/L/day. A slight decline in performance was observed in the thermophilic first-

stage above the 7 g COD/L/day system loading. The 7 g/L/day system loading 

corresponded to an effective first-stage COD loading of 28 g COD/L/day. Performance for 

the first-stage resulted in TCOD removals which decreased from 86% at the 7 g/L/day 

system loading to 62.3% TCOD removal at the 10 g/L/day system loading. 

TPAB 3(1:1 volume ratio thermophilic:mesophilic ) performance in terms of TCOD 

and SCOD removals are illustrated in Figures 18 and 19. The 48- hr system HRT resulted 

in thermophilic and mesophilic stage HRTs of 24 hrs. Thermophilic TCOD removals were 

in excess of 77.9% at COD system loadings in excess of 1 g/L/day. No decrease in 
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Figure 16. Total COD removals at various COD applied loads for TPAB 2 

(1:3) for the 48hrHRT 
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Figure 17. Soluble COD removals at various COD applied loads for TPAB 2 

(l:3)forthe48hrHRT 
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Figure 18. Total COD removals at various COD applied loads for TPAB 3 

(l:l)forthe48hrHRT 
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Figure 19. Soluble COD removals at various COD applied loads for TPAB 3 

(l;l)forthe48hrHRT 
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performance was observed for either phase of TPAB 3 at the applied COD loadings. The 

effective COD loading on the thermophilic first-stage at the 48- hr system HRT ranged from 2 

to 20 g/L/day. 

The performance in terms of TCOD removal for the three TPAB thermophilic first stages 

is illustrated in Figure 20. The 24-hr HRT thermophilic first stage outperformed the 6 and 12 

hr HRT units, with TCOD removals in excess of 80% above the 3 g COD/L/day system loading. 

TCOD removals were higher in the 24- hr HRT thermophilic first-stage unit since the effective 

COD loadings were much lower than the effective loadings for the 6 or 12 hr HRT thermophilic 

units. The effective COD loadings for the thermophilic stages for the three TPAB systems at the 

24,12 , and 6 -hr HRTs were 2 to 20 g/L/day, 4 to 40 g/L/day, and 8 to 80 g/L/day, respectively. 

Overall two-stage performance in terms of total and soluble COD removals for the TPAB 

systems at the 48-hr system HRT is illustrated in Figures 21 and 22. There was no significant 

difference in overall two-stage performance between the three TPAB systems. TCOD removals 

ranged from 93.5 to 98.6%, and SCOD removals ranged from 98.4 to 99.5%. Total COD 

removals of 93.5 to 98.6% corresponded to final effluent TCOD ranging from 140 mg/L to 840 

mg/L. 

Figures 23 through 28 illustrate performance in terms of COD removal for the three 

TPAB systems at the 36-hr system ( thermophilic plus mesophilic ) HRT at COD system 

loadings of 2 to 9 g/L/day. 
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Figure 20. Total COD removals for the three TPAB thermophilic 

stages for the 48 hr HRT 
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Figure 22. System SCOD removals at various COD applied loads for the three TPAB 

systems for the 48 hr HRT 
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Figures 23 and 24 show the performance of TPAB 1(1:7 volume ratio ) in terms of total 

and soluble COD removals, respectively. For TPAB 1, the 36-hr system HRT resulted in a 

thermophilic stage HRT of 4.5 hr and a mesophilic stage HRT of 31.5 hr. For the thermophilic 

first stage, TCOD removals ranged from 21.7 to 38.3%, and SCOD removals ranged from 56.1 

to 62%. The performance of the thermophilic first stage at the 4.5- hr HRT was observed to be 

quite stable in terms of TCOD and SCOD removals, as compared to the decline in performance 

for TPAB 1 at the 48-hr system HRT. The stability in performance for the thermophilic first 

stage at the 36- hr HRT may have been caused by a population shift during the course of the 

experiment, whereby over time a relatively small but stable population of methanogens 

predominated in this reactor. During the experiment, the three TPAB systems were operated 

first at the 48- hr system HRT, then at the 24- hr system HRT, and lastly at the 36- hr system 

HRT. Although thermophilic first-stage TCOD removals were low, the overall two-stage 

TPAB system performed well, with TCOD removals ranging from 94.5 to 97.5%, and SCOD 

removals ranging from 98.1 to 99.2%. 

Figures 25 and 26 illustrate the performance of TPAB 2 ( 1:3 volume ratio 

thermophilic:mesophilic ) in terms of total and soluble COD removals, respectively. For TPAB 

2, the 36- hr system HRT results in a thermophilic HRT of 9 hrs, and a mesophilic HRT of 27 

hrs. For the thermophilic stage, TCOD removals were observed to be nearly constant over the 
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Figure 23. Total COD removals at various COD applied loads for TPAB 1 (1:7) 

for the 36 hr HRT 
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Figure 24. Soluble COD removals at various 
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range of applied COD system loadings of 2 to 9 g/L/day, which correspond to an effective 

COD load on the first stage of 8 to 36 g/L/day. TCOD removals for the thermophilic stage 

ranged from 59.2 to 67.6%. This means that at a 9- hr HRT, the thermophilic unit was capable 

of removing approximately two-thirds of the applied organic loading. SCOD removals were 

observed to decline slightly above the 5 g COD/L/day system loading. The overall two-phase 

TPAB 2 system performed well, with TCOD removals ranging from 95.9 to 97.1% and SCOD 

removals ranging from 98.6 to 99.1%. 

Figures 27 and 28 illustrate the performance of TPAB 3 ( 1:1 volume ratio 

thermophilic:mesophilic ) in terms of total and soluble COD removals, respectively. For TPAB 

3, the 36-hr system HRT resulted in an 18-hr HRT for both the thermophilic and mesophilic 

stages. Higher TCOD and SCOD removals for the thermophilic stage were observed at system 

COD loadings of 5 to 9 g/L/day. Effective loadings on the thermophilic stage at system COD 

loadings of 5 to 9 g/L/day ranged from 10 to 18 g COD/L/day. Higher thermophilic removals 

were observed at effective COD loadings in excess of 10 g/L/day in part because of the 

somewhat misleading nature of COD removal percentages, in that higher loadings result in 

higher removal percentages since a higher influent COD is applied. Also, it is believed that 

thermophilic anaerobic systems operate more efficiently at higher minimum loadings as 

compared to mesophilic anaerobic systems. The overall two-stage TPAB 3 system performed 

well with TCOD removals ranging from 91.5 to 95.1% and SCOD removals ranging from 97.4 

to 99%. 
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Figure 25. Total COD removals at various COD applied loads for TPAB 2 (1:3) 

for the 36 hr HRT 
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Figure 26. Soluble COB removals-atiîariûus COD applied loads-for TPAB 2 (1:3) 

for the 36 hr HRT 
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Figure 27. Total COD removals at various COD applied loads for TPAB 3(1:1) 

for the 36 hr HRT 
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Figure 28. Soluble COD remevals.at various COD applied loads for TPAB 3(1:1) 

for the 36 hr HRT. 
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Figure 29 illustrates the comparison of the three TPAB thermophilic first stages in terms of 

TCOD removal at the 36- hr HRT. The 18-hr HRT thermophilic unit outperformed both the 4.5 

and 9-hr HRT units at COD system loadings in excess of 3 g/L/day. For the 18- hr HRT unit, 

TCOD removals ranged from 82.8% at the 5 g COD/L/day system loading, to 74.6% at the 9 g 

COD/L/day system loading. The 4.5 and 9 -hr HRT thermophilic unit displayed nearly stable 

TCOD removals at COD system loadings ranging from 2 to 9 g/L/day. TCOD removals for the 

4.5- hr HRT unit ranged from 30.1 to 38.3% and TCOD removals for the 9 -hr HRT unit ranged 

from 59.2 to 67.6%. COD system loadings of 2 to 9 g/L/day resulted in an effective COD load 

for the thermophilic first stage at the 18- hr HRT of 4 to 18 g/L/day. The effective loadings on 

the 9 and 4.5- hr HRT thermophilic units were 8 to 36 g/L/day and 16 to 72 g/L/day, 

respectively. It is believed that a relatively small but stable population of methanogens 

occupied the 4.5- hr HRT unit because of the stable TCOD removals at applied COD loadings 

up to the high load of 72 g/L/day. 

The TCOD removals at the 2 g/L/day load were slightly higher for the 9-hr HRT unit 

as compared to the 18- hr HRT unit. This was because the effective load on the 18-hr HRT unit 

was only 4 g/L/day. In the COD test, higher percentages of removal are achieved as applied 

organic loads are increased. 

Performance in terms of total and soluble COD removals for the three TPAB systems 

at the 36 hr HRT is illustrated in Figures 30 and 31. Similar to the 48- hr system HRT, there was 

no significant difference in overall two-stage COD removal. TCOD and SCOD removals for the 
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Figure 29. Total COD removals for the three TPAB thermophilic 

stages for the 36 hr HRT 
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Figure 30. System TCOD removals at various COD applied loads for the three TPAB 

systems for the 36 hr HRT 
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Figure 31. System SCOD removals at various COD applied loads for the three TPAB 
systems for the 36 hr HRT 
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three TPAB systems at COD system loadings of 2 to 9 g/L/day ranged from 91.5 to 97.5%, and 

97.4 to 99.2%, respectively. 

Figures 32 through 37 illustrate performance in terms of COD removal for the three 

TPAB systems at the 24-hr system HRT at COD system loadings of 10 to 16 g/L/day. 

Figures 32 and 33 show the performance of TPAB 1(1:7 volume ratio ) in terms of 

total and soluble COD removals, respectively. For TPAB 1, the 24-hr system HRT resulted in 

a thermophilic HRT of 3 hrs, and a mesophilic HRT of 21 hrs. Effective COD loadings on the 

thermophilic stage ranged from 80 to 128 g/L/day. For the thermophilic stage, SCOD removals 

were observed to remain relatively stable over the applied COD system loadings, with SCOD 

removals ranging from 35.2 to 53.6%. TCOD removals for the thermophilic stage declined 

from 20.2% at the 14 g COD/L/day system loading to 0% at the 15 g COD/L/day system 

loading. The decline in TCOD removal for the thermophilic stage was caused by a large 

amount of solids which were produced and released into the effluent at the higher loading rates. 

The solids released from the first stage were then passed on and retained by the mesophilic 

second stage. Effluent TSS from the mesophilic second stage were less than 500 mg/L at the 15 

g COD/L/day system loading, as shown in Appendix D. Although TCOD removals declined, 

the overall two-stage TPAB 1 system performed well, with TCOD and SCOD removals ranging 

from 89.8 to 95.9%, and 97.8 to 99.2%, respectively. 

Figures 34 and 35 illustrate the performance of TPAB 2(1:3 volume ratio ) in terms of 

total and soluble COD removals, respectively. For TPAB 2, the 24-hr system HRT resulted in 
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Figure 32. Total COD removals at various COD applied loads for TPAB 1 (1:7) 
forthe24hrHRT 
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Figure 33. Soluble COD removals at various COD applied loads for TPAB 
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Figure 34. Total COD removals at various COD applied loads for TPAB 2 (1:3) 
for the 24 hr HRT 
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Figure 35. Soluble COD removals at various COD applied loads for TPAB 2 (1:3) 
for the 24 hr HRT 
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a thermophilic stage HRT of 6 hrs, and a mesophilic stage HRT of 18 hrs. Effective COD 

loadings on the 6-hr HRT thermophilic unit ranged from 40 to 64 g/L/day. Both total and 

soluble COD removals were observed to remain relatively constant for the thermophilic and 

mesophilic phases over the applied COD system loadings of 10 to 16 g/L/day. TCOD removals 

for the thermophilic stage ranged from 42.6 to 57.2%, and SCOD removals ranged from 69.3 to 

82%. The overall two-stage TPAB 2 system performed well, with TCOD removals ranging from 

91.3 to 95.3%, and SCOD removals ranging from 97.5 to 98.7%. 

Figures 36 and 37 illustrate the performance of TPAB 3(1:1 volume ratio ) in terms of 

total and soluble COD removals, respectively. For TPAB 3, the 24-hr system HRT resulted in 

a 12 hr HRT for both the thermophilic and mesophilic stages. Nearly equal freatment 

performance was observed for the thermophilic and mesophilic stages, with TCOD removals for 

both stages ranging from 69.3 to 83.6%. SCOD removals for both stages ranged from 75 to 

92.9%. The thermophilic first stage was observed to remove a large portion of the organic 

matter. This was.caused by the relatively long HRT of 12 hrs, and also the low effective COD 

loadings. First stage effective COD loadings ranged from 20 to 32 g/L/day. 

Figure 38 illustrates the comparison of the three TPAB thermophilic first stages in terms 

of TCOD removal at the 24-hr system HRT. Applied COD loadings of 10 to 16 g/L/day resulted 

in effective COD loadings on the thermophilic stages for the 3, 6 , and 12- hr HRT units of 80 

to 128 g/L/day, 40 to 64 g/L/day, and 20 to 32 g/L/day, respectively. The 12-hr HRT unit 

outperformed the 6 and 3-hr HRT units, with TCOD removals ranging from 63.3 to 77.4%, 
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Figure 36. Total COD removals at various COD applied loads for TPAB 3 (1:1) for 
the 24 hr HRT 
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Figure 37. Soluble COD removals at various COD applied loads for TPAB 3(1:1) 
for the 24 hr HRT 
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but the effective loadings for this unit were much lower as compared to the 6 and 3- hr HRT 

thermophilic units. The 3- hr HRT unit was observed to achieve no TCOD removal at the 15 g 

COD/L/day system loading. At the 15 g/L/day system loading, the effective COD loading on 

this unit was 120 g/L/day. The decrease in performance was caused by an increasing production 

and release of biomass from the 3 -hr HRT unit. The 6- hr HRT unit was observed to provide 

perhaps the most optimum TCOD removals for the first stage of a two-stage system, with TCOD 

removals of 42.6 to 57.2%. Performance in terms of total and soluble COD removals for the 

three TPAB systems at the 24- hr system HRT are illustrated in Figures 39 and 40. There was 

no significant difference in overall two-stage performance between the three TPAB systems in 

terms of total and soluble COD removals. TCOD and SCOD removals for the three TPAB 

systems ranged from 91.3 to 96%, and 97.2 to 99.2%, respectively. Since there was no 

difference in performance between the three TPAB systems at the 24, 36, or 48-hr HRTs at 

applied COD system loadings of 1 to 16 g/L/day, the 1:7 volume ratio TPAB system can be 

used as effectively as the 1:1 or 1:3 volume ratio TPAB systems. 

Thermophilic first stage soluble COD removal rates at HRTs ranging from 3 to 6 hrs are 

shown in Figures 41 through 44. These thermophilic stages for the TPAB systems were operated 

at very short HRTs and at high COD loadings. 

Figure 41 illustrates the 6- hr HRT thermophilic unit performance in terms of SCOD 

removal rates. The 6- hr HRT unit corresponds to TPAB 1 (1:7) operated at a 48- hr HRT. A 

near linear relationship between SCOD removal rate and applied load was observed up to the 
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Figure 39. System TCOD removals at various COD applied loads for the three 
TPAB systems for the 24 hr HRT 
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Figure 40. System SCOD removals at various COD applied loads for the three TPAB 
systems for the 24 hr HRT 
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64 g/L/day effective COD loading. SCOD % removals averaged 80%. The maximum observed 

SCOD removal rate was 49 g SCOD/L/day at the 64 g/L/day loading. Above the 64 g/L/day 

loading, SCOD removal rates declined. 

Figure 42 shows the 4.5-hr HRT thermophilic unit performance in terms of SCOD 

removal rates. The 4.5- hr HRT unit corresponds to TPAB 1 (1:7) operated at a 36- hr system 

HRT. A linear relationship was observed between SCOD removal rate and effective loading 

at effective loadings up to the 72 g/L/day loading. SCOD removals averaged 59%. The 

maximum SCOD removal rate was 47 g SCOD/L/day at the 72 g/L/day load. No decrease in 

SCOD removal rates were observed. No decrease in SCOD removal rates were observed at the 

higher loads because it was believed that over time during the experiment, a very stable 

population of methanogens developed in the reactor. A 4.5 hr- HRT first- stage is sufficient to 

remove two-thirds of the organic matter up to loads of 72 g/L/day. In the two-stage TPAB 

system the second stage is able to remove the remaining organic matter. 

Figure 43. shows the 6- hr HRT thermophilic unit SCOD removal rates at effective first 

stage loads of 40 to 64 g COD/L/day. In this case, the 6- hr HRT unit corresponded to TPAB 

2 (1:3) operated at the 24-hr system HRT. The maximum SCOD removal rate was 49 g 

SCOD/L/day at the 64 g/L/day loading. The average SCOD removal percentage was 76% at the 

applied loads. The results for the 6 -hr HRT unit at the 24 -hr system HRT correlated well with 

• the results in Figure 41 for the 6- hr HRT unit operated at the 48- hr system HRT. There was no 

observed decline in SCOD removals rates for the 6- hr HRT unit operated at the 24 -hr system 



www.manaraa.com

147 

50 

40 

I 

SCXDD 30 
REMOVAL 

RATE, gyUday 20 

10 

0 

0 20 40 60 80 

EFFECTIVE œo LOADING, gAjfclay 

Figure 41. SCOD removal rates at various effective COD loads for the 6 hr HRT 
thermophilic first stage ( System HRT = 48 hrs) 
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Figure 42. SCOD removal rates at various effective COD loads for the 4.5 hr 
HRT thermophilic first stage ( System HRT = 36 hrs ) 
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Figure 43. SCOD removal rates at various effective COD loads for the 6 hr 
HRT thermophilic first stage ( System HRT = 24 hrs ) 



www.manaraa.com

150 

HRT. Although there was no decline in performance, the highest effective COD load applied 

was 64 g/L/day. Performance for the 6-hr HRT unit in Figure 41 was not observed to decline 

until effective loadings were in excess of 64 g/L/day. 

Figure 44 illustrates the SCOD removal rates for the 3- hr HRT thermophilic unit at 

effective COD loads ranging from 80 to 128 g/L/day. In this case, the 3-hr HRT unit 

corresponded to TPAB 1(1:7) operated at the 24- hr system HRT. SCOD removal rates did not 

increase linearly with increases in effective loadings. It was observed that SCOD removal rates 

slowly approached a maximum value of 60 g SCOD/L/day. The average SCOD removal 

percentage was 47% over the applied effective loadings. 

From comparision of Figures 41 and 43, the maximum SCOD removal rates at the 6-

hr HRT was 50 g/L/day. The 6- hr HRT thermophilic unit was operated at effective loads up to 

80 g COD/L/day. There was an observed leveling off or decline in SCOD removals as higher 

effective loads were applied. 

In Figure 42, the 4.5- hr HRT unit showed no leveling off in SCOD removal rates up to 

the highest applied load of 72 g COD/L/day. The 4.5- hr HRT data was collected near the end 

of the 14 month experiment when the most mature and stable population of methanogens had 

developed. 

In Figure 44, much higher effective COD loads ranging from 80 to 128 g/L/day were 

applied at the 3-hr HRT. In this case, SCOD removal rates approached a maximum of 60 

g/L/day, indépendant of organic loading. 
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In high applied COD loads at very short HRTs, it is believed that the thermophilicstages 

were pushed to their limits in terms of how quickly the organic matter could be removed. It is 

the observation of this research that maximum SCOD removal rates at thermophilic temperatures 

range from 50 to 60 g/L/day at HRTs ranging from 3 to 6 hrs. A SCOD removal rate of 60 

g/Lday corresponds to a 5-day biochemical oxgen demand (BOD;) removal of 1872 lb/1000 

ftVday ( with a COD/BOD ratio of 0.5 ). This represents an extremely high rate of organic 

matter removal for a biological treatment system. 

Volatile Acids 

An analysis of the volatile acids is necessary to more fully understand some of the 

mechanisms relating to the two-stage TPAB system performance. In this two-stage system, the 

first stage converts a portion of the organic matter to methane, and the remainder of the organic 

matter is incompletely stabilized, and converted to volatile acids. These volatile acids produced 

in the first stage are fiirther stabilized to methane in the second stage. The quanitity of volatile 

acids released to the second stage is related to the residence time in the reactor (HRT). Longer 

HRTs generally result in a higher conversion of volatile acids to methane. 

The total volatile acids measured in the effluent from the thermophilic first stages at 

system HRTs of 48, 36, and 24 hrs are illustrated in Figures 45 through 47, and are recorded in 

Appendix C. 
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Figure 45 illustrates the total volatile acid concentrations in the effluent from the 

thermophilic first stages of the three TPAB systems at the 48- hr system HRT. Total volatile 

acids increased in both TPAB 1 and TPAB 2 above the 7 g COD/L/day system loading. For 

TPAB 1, total volatile acids increased from 1129 mg/L at the 7 g COD/L/day system loading to 

2152 mg/L at the 8 g COD/L/day system loading. This increase in total volatile acids may 

have caused the SCOD removal rates to decline in TPAB 1, as shown in Figure 15. TPAB 2 also 

showed increased total volatile acids at the higher system loadings. The results of the increase 

in total volatile acids are reflected in Figure 17, with a slight decrease in SCOD removal 

performance at the higher system loadings. TPAB 3 was observed to display low concentrations 

of total volatile acids from the thermophilic first stage. The effective COD loads for the 24- hr 

HRT thermophilic unit ranged from 2 to 20 g/L/day. The longer HRT of 24 hr resulted in a more 

complete conversion and removal of volatile acids as compared to TPAB 1 or TPAB 2. 

Figure 46 illustrates the total volatile acids in the effluent from the thermophilic first 

stages of the three TPAB systems at the 36- hr system HRT. The thermophilic first stage of 

TPAB 1 was the only unit that was observed to produce higher levels of total volatile acids with 

increased loadings. The thermophilic stage of TPAB 1 was observed to produce total volatile 

acids in excess of2000 mg/L at the 9 g COD/L/day system loading. Although the total volatile 

acids increased, SCOD removals remained near 60%, as illustrated in Figure 24. This is another 

example of the somewhat misleading nature of COD removal values. The volatile acids 

increased, but COD applied loads also increased, leading to a stable COD removal percentages. 
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Figure 46. Total first-stage volatile acids at various COD loads for the three 
TPAB systems for the 36 hr HRT 
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The thermophilic first stage of TPAB 2 was observed to produce low levels of total volatile 

acids in the effluent. This was perhaps caused in part by the higher first stage HRT of 9 hr. 

At the higher HRTs, the organic matter contained in the influent feed may have been held 

sufficiently long as to provide for more complete breakdown of the volatile acids. The 18- hr 

HRT thermophilic unit showed a decrease in volatile acids at applied loadings ranging from 2 

to 5 g COD/L/day. This was observed since the systems were taken from a 24- hr system HRT 

with high volatile acids in the effluent to a 36- hr HRT. In retrospect, sufficient time was not 

allowed to "flush out" the high levels of volatile acids produced at the 24- hr HRT. 

Figure 47 illustrates the total volatile acid concentrations in the effluent from the 

thermophilic first stages of the three TPAB systems at the 24- hr system HRT. Total volatile 

acid concentrations for the thermophilic stage of TPAB 1 increased from 1422 mg/L at the 11 

g COD/L/day system loading to 2679 mg/L at the 16 g COD/L/day system loadings. Although 

the volatile acids were high at the higher loadings, the SCOD removals for the first stage 

remained approximately near 50%, as shown in Figure 33. The SCOD removals for TPAB 1 

remained constant even as volatile acids increased. Lower SCOD removals for the thermophilic 

stage of TPAB 1 were not caused by increased volatile acid levels, but by a very short HRT of 

3 hrs, coupled with a high effective COD loading rate of 80 to 128 g/L/day. 

The total volatile acid concentrations ( as acetic ) exceeded 2000 mg/L during situations 

• of low HRTs and higher loading rates for the thermophilic units. These high levels of volatile 

acids were anticipated. It is generally believed that relatively high concentrations of volatile 
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Figure 47. Total first-stage volatile acids at various COD loads for the three 
TPAB systems for the 24 hr HRT 
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acids can be tolerated by anaerobic systems provided that sufficient buffering material is 

present ( McCarty and McKinney, 1961). 

When total volatile acids increased, the thermophilic units were buffered with sodium 

bicarbonate to maintain a pH of 6.5 or greater. A concern with supplemental buffering is the 

potential for salt cation toxicity. The amount of sodium added with the sodium bicarbonate 

never exceeded approximately 900 mg/L. 

In Figure 45, it was observed that at the 48-hr system HRT, the total volatile acids 

increased sharply at the 8 g/L/day system load for the 6 and 12- hr HRT units. In Figure 47 at 

the 24- hr system HRT, there was no significant increase in total volatile acids for the 6 and 12-

hr HRT units. The highest applied effective COD load on the 6 and 12- hr HRT units at the 24-

hr system HRT were 64 and 32 g/L/day, respectively. The effective COD loads for the 6 and 

12-hr HRT units at the 48- hr system HRT were 64 and 32 g/L/day at the 8 g/L/day system load. 

The 24- hr system HRT data was collected after the 48- hr system HRT data. It is believed that 

a more stable population of methanogens developed over time in the thermophilic units. Thus 

at the 24- hr HRT, the 6- hr and 12- hr HRT units were able to handle equivalent COD loads 

without a significant increase in volatile acids. 

The total volatile acids in the final effluent from the mesophilic second stages of the 

TPAB systems were generally quite low, as outlined in Appendix C. Total volatile acid 

concentrations in the mesophilic effluents ranged from 6 to 141 mg/L ( as acetic ). 
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The total volatile acids and individual volatile acids for the thermophilic first stages of 

the three TPAB systems are shown in Figures 48 through 56. 

Thermophilic first-stage HRTs for the three TPAB systems ranged from 3 to 24 hrs. In 

comparing the individual volatile acids for the different applied HRTs, it was observed that 

longer HRTs of 12,18, and 24 hrs for the first stages resulted in a larger percentage of propionic 

acid in the thermophilic effluents, as shown in Figures 48, 49, 51, and 53. Propionic acid is 

usually the acid reported in the literature which predominates at thermophilic temperatures. At 

relatively long first stage HRTs, a population shift may occur in which the microorganisms 

responsible for the breakdown of propionate decline in numbers. 

It was observed that at shorter HRTs of 3 and 6 hrs, that the levels of butyric and valeric 

acids increased, as illustrated in Figure 50. It was also observed that the levels of butyric and 

valeric acids did not increase proportionately until very high effective loadings were applied to 

the thermophilic first stages. In Figure 50, the effective COD loadings on the 6- hr HRT 

thermophilic reactor ranged from 58 to 80 g/L/day. In Figure 56, the 3- hr HRT thermophilic 

unit showed increases in butyric acid at effective COD loadings ranging from 80 to 128 g/L/day. 

Ammonia 

Ammonia concentrations were monitored during the experiment, since it is known that 

total ammonia concentrations higher than approximately 1500 mg/L (as NHj-N) are potentially 
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Figure 49. Thermophilic first-stage volatile acids at a 12 hr HRT 
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Figure 50. Thermophilic first-stage volatile acids at a 6 hr HRT 
( System HRT 48 hrs ) 
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Figure 51. Thermophilic first-stage volatile acids at a 18 hr HRT 
( System HRT 36 hrs ) 
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Figure 52. Thermophilic first-stage volatile acids at a 9 hr HRT 
( System HRT 36 hrs ) 
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Figure 53. Thermophilic first-stage volatile acids at a 4.5 hr HRT 
( System HRT 36 hrs ) 
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Figure 54. Thermophilic first-stage volatile acids at a 12 hr HRT 
( System HRT 24 hrs ) 
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Figure 55. Thermophilic first-stage volatile acids at a 6 hr HRT 
( System HRT 24 hrs ) 
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Figure 56. Thermophilic first-stage volatile acids at a 3 hr HRT 
( System HRT 24 hrs ) 
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toxic in anaerobic treatment systems. There were concerns that the high effective loadings on 

the thermophilic first stages of the TPAB systems would result in inhibitory ammonia 

concentrations. 

The total ammonia concentrations for both the thermophilic and mesophilic stages for 

the three TPAB systems at system HRTs of 48, 36, and 24- hrs are illustrated in Figures 57 

through 62. Total ammonia concentrations at the 48- hr system HRT for the thermophilic and 

mesophilic stages are shown in Figures 57 and 58. Total anmionia concentrations for the 

thermophilic units increased with increasing loading rates, and never exceeded 1058 mg/L at the 

highest COD system loading of 10 g/L/day. The 6- hr HRT thermophilic unit was observed to 

produce lower total ammonia concentrations in the effluent than the 12 or 24- hr HRT 

thermophilic units above the 6 g COD/L/day system loading. The lower ammonia production 

in the 6 hr HRT unit corresponded to decreased TCOD and SCOD removal rates for this reactor, 

as shown in Figures 14 and 15. At the lower HRT of 6 hr, there was a threshold in the amount 

of protein which could be converted to ammonia. The microorganisms may have been hindered 

by a lack of sufficient population and sufficient time necessary for organic matter destruction to 

occur. 

The mesophilic ammonia concentrations for the 48- hr HRT are shown in Figure 58. 

Ammonia was not removed in the mesophilic second stage, but was observed to be removed 

from the reactor with the mesophilic effluent. Total ammonia concentrations for the mesophilic 

second stage never exceeded 1198 mg/L. 



www.manaraa.com

170 

TOTAL 
AMMONIA, 

mg/L 

1500 

1000 

500 

1PAB1 (6hr) 

-D TPAB2(12hr) 

— • — 3  ( 2 4  h r )  

2 4 6 8 

COD SYSTEM LOADING. gAJday 

10 

Figure 57. Total ammonia for the thermophilic first-stage effluents 
at the 48 hr system HRT 
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Figure 58. Total ammonia for the mesophilic second-stage effluents at 
the 48 hr system HRT 
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Figure 59. Total ammonia for the thermophilic first-stage effluents 
at the 36 hr system HRT 
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Figure 60. Total ammonia for the mesophilic second-stage effluents 
at the 36 hr system HRT 
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Total ammonia concentrations for the 36- hr system HRT for the thermophilic and 

mesophilic stages for the three TPAB systems are illustrated in Figures 59 and 60. Thermophilic 

ammonia concentrations never exceeded 888 mg/1, and mesophilic ammonia concentrations 

remained below 1100 mg/1. For TPAB 1 (1:7 volume ratio ), it was observed that lower 

concentrations of ammonia were produced in the first stage, and higher concentrations were 

produced in the second stage, as compared to TPAB 2 and TPAB 3. TPAB 1 was operated 

at a 4.5- hr HRT in the thermophilic stage. This short HRT may have not provided sufficient 

time for protein breakdown. 

The total ammonia concentrations at the 24- hr system HRT for the thermophilic and 

mesophilic stages for the three TPAB systems are illustrated in Figures 61 and 62. It was 

anticipated that the high COD system loadings and the high effective loadings on the 

thermophilic stages would result in increased ammonia concentrations. For TPAB 1 and TPAB 

2, the effective COD loadings on the first stages were SO to 128 g/L/day and 40 to 64 g/L/day, 

respectively. 

The ammonia concentrations for the thermophilic first stages are shown in Figure 61. 

TPAB 1 and TPAB 2 were observed to have decreased ammonia levels at COD system loads 

higher than 13 g/L/day. This was thought to be caused by the short HRTs of 3 and 6 hrs in the 

thermophilic stages of TPAB 1 and TPAB 2. The HRTs were too short to allow for complete 

protein degradation to ammonia in the first stages. 
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The ammonia concentrations for the mesophilic stages at the 24 hr system HRT are 

shown in Figure 62. Total ammonia concentrations remained below 1591 mg/L at the applied 

COD loadings, and TCOD and SCOD removals were not adversely affected for any of the three 

TPAB systems. 

Although it was anticipated that there would be potentially inhibitory concentrations of 

ammonia, ammonia levels never exceeded 1591 mg/L ( as NH3-N ), and ammonia levels did not 

affect TPAB system performance in terms of TCOD or SCOD removals. 

In past research ( Harris, 1992; Harris and Dague, 1993 ), thermophilic units capable of 

high COD loadings eventually produced toxic concentrations of ammonia which affected 

system performance. With the TPAB system, especially in the 1:7 volume ratio configuration, 

the thermophilic stage can withstand high applied COD loadings without the development of 

toxic ammonia concentrations. As higher loadings are applied at low HRTs, the first stage only 

degrades a portion of the organic protein in the waste to ammonia. 

Methane Production 

The methane production rates standardized in terms of liters of methane per liter of 

reactor volume per day for the thermophilic plus mesophilic stages of the three TPAB systems 

are illustrated in Figures 63 through 65. 

Figure 63 illustrates the total methane production for the three TPAB systems at the 48-

hr system HRT at COD system loadings of 1 to 9 g/L/day. There was virtually no difference in 
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total system methane production for the three TPAB systems, which corresponded to the 

similarity in TCOD and SCOD removals for the TPAB systems. This means that any of the 

volume ratio TPAB systems can operate effectively with equal methane production at the 48-

hr system HRT, for the given applied loadings. 

Similar results, in terms of equivalent methane production between the three TPAB 

systems, were observed at the 36-hr and the 24- hr HRT at system COD loadings of 2 to 16 

g/L/day, as shown in Figures 64 and 65. The measured methane production for the TPAB 

systems agreed with the similar TCOD and SCOD removals shown previously. 

The methane production for the thermophilic and mesophilic stages for the three TPAB 

systems at the 48- hr system HRT are illustrated in Figure 66. In TPAB 1, the 6- hr HRT 

thermophilic unit was connected in series to a 42- hr HRT mesophilic unit. It was observed that 

at system COD loadings in excess of 7 g/L/day that methane production declined in the 

thermophilic unit and increased in the corresponding mesophilic unit. These results correlate 

well with the observed decrease in both TCOD and SCOD removals for TPAB 1 at the 48- hr 

HRT as shown in Figures 14 and 15. Saturation loading had occurred for the 6- hr HRT 

thermophilic unit, meaning that with increased applied loadings, there was no increase in COD 

removal or methane production. The saturation loading occured at effective loadings on the 

thermophilic first stage in excess of 48 g COD/L/day. Since ammonia levels were not elevated 

for this unit, as shown in Figure 57, ammonia toxicity was not involved. Total volatile acids 

became elevated at the 7 g COD/L/day system loading as shown in Figure 45. It is believed that 

at the high effective loading and low HRT of 6 hr, that the organic matter removal capabilities 
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Figure 64. Methane production rates at various COD applied loads for the three TPAB 
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Figure 65. Methane production rates at various COD applied loads for the three TPAB 
systems at the 24 hr HRT 
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Figure 66. Methane production at various COD applied loads at the 48 hr HRT 
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for the methanogens in the thermophilic unit had reached their maximum at the 56 g COD/L/day 

loading. As a result, volatile acids correspondingly increased. 

The relative underloading for the mesophilic second stages at the 48- hr system HRT for 

TPAB 2 and TPAB 3 are also illustrated in Figure 66. The thermophilic units were observed to 

remove and convert a majority of the organic matter to methane at the applied COD loadings, 

while methane production for the mesophilic units remained relatively constant over the range 

of applied loads. 

The relative underloading for the mesophilic second stages at the 48- hr system HRT for 

TPAB 2 and TPAB 3 are also illustrated in Figure 66. The thermophilic units were observed 

to remove and convert a majority of the organic matter to methane at the applied COD loadings, 

while methane production for the mesophilic units remained relatively constant over the range 

of applied loads. 

The methane production for the thermophilic and mesophilic stages for the three TPAB 

systems at the 36 -hr system HRT are illustrated in Figure 67. The relative underloading of the 

mesophilic unit for TPAB 3 was observed as an steady increase in methane production with 

increasing loadings for the 18 hr- HRT thermophilic unit, and a relatively constant methane 

production for the corresponding 18- hr HRT mesophilic unit with increasing loadings. It was 

observed for TPAB 1 that during the course of the experiment a population shift of 

microorganisms had occurred, in that the majority of the methane was produced in the 31.5 hr 
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HRT mesophilic second stage rather than the 4.5- hr HRT thermophilic stage. Previously in the 

experiment, the 4.5-hr HRT unit was exposed to very high effective loading rates, which may 

have caused a selection for fewer methanogens and more acidogenic microorganisms. Although 

the population shift was observed based on methane production for the individual stages for 

TPAB 1, the overall methane production for the two-stage system parallelled the other two 

TFAB systems. 

The methane production for the thermophilic and mesophilic stages for the three TPAB 

systems at the 24- hr system HRT are illustrated in Figure 68. Results similar to the 36- hr HRT 

were observed in terms of methane production. TPAB 1 produced the majority of the total 

system methane in the mesophilic second stage, and TPAB 3 produced the majority of the total 

system methane in the thermophilic stage. 
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Figure 67. Methane production at various COD applied loads at the 36 hr HRT 
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VII. SIGNIFICANCE OF RESULTS 

The two-phase TPAB system has been demonstrated to be an effective new anaerobic 

treatment process. The three TPAB systems displayed excellent treatment performance in terms 

of COD removals at the 24, 36, and 48 hr system HRTs. Applied loads ranged from 1 to 16 g 

COD/L/day. Total system COD removals were in excess of 91% at all applied loadings. The 

overall average TCOD removal was 95.5% for the three TPAB systems at HRTs of 24, 36, and 

48 hrs. Soluble system COD removals were in excess of 96% at all applied loadings. The 

overall average SCOD removal was 98.7% for the three TPAB systems at HRTs of 24, 36, and 

48 hrs. 

A major factor which allowed the TPAB systems to achieve superior organic matter 

removals was the unique two-stage, two-temperature operation. The thermophilic first stage is 

able to provide very high reaction rates to remove and convert a significant portion of the 

organic material in the waste stream to methane. During periods of extreme overloading on the 

thermophilic units, the first stage also provided for a significant conversion of organic matter to 

volatile acids. These volatile acids provide a simple substrate for the mesophilic second stage. 

The performance of the thermophilic first stage is dependant on both the HRT and 

organic loading. At longer HRTs and lower effective loadings, a greater portion of the organic 

matter is stabilized to methane. At effective loading rates greater than 40 g COD/L/day, greater 

amounts of volatile acids are produced. Very short HRTs ranging from 3 to 6 hrs in the 

thermophilic first stage act in a positive manner to dilute the volatile acids. 
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The mesophihc second stages in the TPAB systems provided for significant "polishing" 

of the thermophilic effluent. Any residual biodegradable organic matter, along with volatile 

acids produced in the first stage, were successfully removed in the second stage. 

The three TPAB systems were observed to provide very stable treatment. The 

thermophilic first stages responded quickly to increases in applied COD load. In the past, 

anaerobic treatment at thermophilic temperatures has been cited as less stable than treatment at 

mesophilic temperatures. This was not observed for the thermophilic units in this research. The 

mesophilic second stage responded well to overloaded first- stage conditions. Overall treatment 

performance was not adversely affected, even when the first stage was operated at extremely 

high loading rates ( up to 128 g COD/L/day ). The two stage configuration also has significant 

stability advantages over comparable single stage systems. The organic loading of industrial 

wastes can vary significantly over time. The two stage TPAB system provides a built-in safety 

factor. Transient periods of high organic loads would be tolerated without significantly affecting 

TPAB system performance. 

The thermophilic first- stages were operated at extremely short HRTs of 3, 4.5, and 6 

hrs during the experiment. Effective COD loadings up to 128 g COD/L/day were applied. 

Maximum SCOD removal rates ranged from 50 g SCOD/L/day at the 6 hr HRT, to 60 g 

SCOD/L/day at the 3 hr HRT. These SCOD removal rates translate to very high 5-day 

biochemical oxygen demand (BOD;) removal rates ranging from 1558 to 1872 lb BOD/1000 

ftVday. Table 23 illustrates typical design loadings and HRTs for various aerobic biological 

treatment processes. As can be seen, the actual BOD, removal rates for the thermophilic stages 
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in the TPAB systems greatly exceed typical design loadings (not removal rates) for any aerobic 

treatment process. This was accomplished at significantly shorter HRTs in the TPAB systems. 

The thermophilic first stages of the TPAB systems had an extremely high rate of organic matter 

removal. Reaction rates generally double for every ten degrees (C) rise in temperature. At 55° 

C, reaction rates are approximately four times higher than at mesophilic temperatures. 

Table 23. Typical design loadings and HRTs for various aerobic treatment processes 
(Metcalf and Eddy, 1991) 

Process Typical Design Loading 
(#BOD;/1000A^/day)' 
( # BODj/lOOO ff/day)^ 

HRT 

days 

Activated Sludge 

Aerated Lagoon 

Trickling Filters 

20-200' 

<40' 

3-15 

3-6 

Roughing 

Rotating Biological Contact 

Low to High Rate 5-100' 

100-500' 

<12% 

.02-1.2 gal/ft^/min 

.08-3.2 gal/ff/min 

0.7 to 4 
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There was no significant difference in treatment performance in terms of total and 

soluble COD removals between the three TPAB systems. In a full-scale application of the TPAB 

process, the 1:7 volume ratio TPAB system may be used as effectively as the 1:1 or 1:3 volume 

ratio TPAB system. In Appendix F, it is shown that the conductive heat losses for the 1:7 

volume ratio TPAB system are much less than for the 1:1 or 1:3 volume ratio TPAB systems. 

This is a significant finding. Since a smaller thermophilic first stage can be used, the overall 

heating costs will be less in a full-scale application. Also, there was no significant decline in 

treatment performance for the TPAB systems at a 24 hr HRT, up to the 16 g COD/L/day applied 

loading. HRTs of even less than 24 hrs may be possible. 

In retrospect, greater differences in terms of both COD removals and methane 

production between the three TPAB systems may have been observed if the systems were 

redesigned to fully load the mesophilic second stages. In this experiment, the thermophilic 

phases were often loaded up to their maximum capacity and sometimes beyond. The 

mesophilic phases were sufficiently large so that saturation loading in the second stage did not 

occur. In order to achieve greater differences between the TPAB systems in future experiments, 

it would be wise to either make the thermophilic units larger, or the mesophilic units smaller. 

Energy balance calculations are shown in Appendix F for a hypothetical industrial 

wastestream. A matrix of raw waste influent temperatures of 50 to 110° F ( 10 to 43° C ) were 

assumed. 5-day biochemical oxygen demand ( BOD;) concentrations ranging from 3.75 to 7.5 

g/L were chosen as concentrations which would generally occur for an industrial wastewater. 
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It was determined that there would be a positive energy balance in terms of excess 

methane production in all cases. Therefore, raw waste temperatures can be as low as 50° F (10° 

C) can be treated without addition of supplemental energy. This is a significant finding. Since 

the majority of industrial wastestreams are 50° F or above, the TPAB process can be applied to 

any biologically-treatable wastewater. The TPAB process will supply surplus energy via 

methane formation. 

Also in Appendix F are economic calculations for the TPAB process in a full-scale 

application. An industry with a 95° F wastestream of 2 MGD, at an organic concentration of 

3.75 g/L BOD; was analyzed. It was determined that for a 3-year payback period, 

approximately 3.3 million dollars could be initially invested as capital costs. This illustrates 

that the TPAB process is economically feasible. 

Harris and Dague (1993) conducted studies on single-stage anaerobic filters operated at 

mesophilic and thermophilic temperatures that may be compared to the two-stage TPAB 

systems used in this study, since identical substrate and similar operating conditions were used. 

The comparison between the work on single -stage filters, and the two-stage TPAB process 

results obtained in this experiment are shown in Table 24. At all of the loadings tested, the two-

stage TPAB system outperformed both thermophilic and mesophilic single- stage filters. These 

results clearly illustrate that the TPAB two-stage, two-temperature process has some definite 

performance advantages over single-stage anaerobic treatment. 
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Table 24. Comparison of single stage thermophilic and mesophilic filters to the TPAB 
process 

48 hr HRT Results 

TCOD Load 
g/L/day 

Thermo. Single Stage Meso. Single Stage 
TCOD % Removals 

TPAB 

5 87.8 90.3 97.9 

8 82.7 83.9 95.5 

11 84.5 81 95.8" 

24 hr HRT Results 

TCOD Load 
g/L/day 

Thermo. Single Stage Meso. Single Stage 
TCOD % Removals 

TPAB 

11 83.4 67.9 93.6 

13 83.1 59.8 92.7 

16 81.3 47.5 94.7 

' TPAB operated at a 10 g/L/day loading. 
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A U.S. patent application has been filed through the Iowa State Univerisity Development 

Office for two-temperature; two-stage treament. This TPAB process experiment provided 

significant results which demonstrated the treatment advantages of the two- stage process. 

These results were presented in the patent application. 
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VIII. CONCLUSIONS 

The results from this research support the following conclusions concerning the 

temperature-phased anaerobic biofllter ( TPAB ) process: 

1. The TPAB process has been demonstrated to be effective in terms of organic matter 

removal for a soluble, complex waste stream at HRTs of 24, 36, and 48 hrs, at system 

COD loading rates ranging from 1 to 16 g/L/day. 

2. Nearly equal treatment performance was observed using three different reactor size ratios. 

It feasible to use a proportionately smaller thermophilic first-stage in the TPAB system 

while obtaining equal treatment performance. 

3. At an HRT of 6 hrs in the thermophilic first-stage, it was observed that high levels of 

volatile acids decreased first-stage performance. At shorter HRTs, performance was not 

observed to decline at the 3 and 4.5 hr HRTs. This was thought to be caused by a dilution 

effect in volatile acids at the shorter HRTs. 

4. Overloaded conditions and short HRTs in the thermophilic first-stages result in increased 

levels of butyric and valeric acids at the 3, 4.5, and 6 hr HRT. At longer HRTs of 12, 18 , 
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and 24 hrs, propionic acids increased at high effective COD loadings in the thermophilic 

first-stages. It is believed that there were thermophilic microbial population differences at 

the longer and shorter HRTs. 

5. The TPAB process producted a good quality final effluent. Volatile acids were low in the 

mesophilic effluent at all times during the experiment. Volatile acids never exceeded 150 

mg/L from the mesophilic final effluent. 

6. The TPAB process is an energy producer, not an energy consumer. A positive energy 

balance in terms of no addition of supplemental energy to heat the raw influent wastes is 

possible at influent temperatures of 50° F ( 10° C ) and above. 

7. The TPAB process is economically feasible. Sigificant capital costs can be invested with a 

short payback period. The TPAB process recovers capital costs through excess methane 

production and the reduction in sewer-use fees. 

8. The TPAB process can achieve higher organic matter removals than is generally possible 

for single-stage anaerobic filter systems operated at equivalent HRTs and COD loadings. 

9. The thermophilic first-stage SCOD removal rates are extremely high, and greatly exceed 

design loadings for any aerobic biological waste treatment process. 
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IX. SUGGESTIONS FOR FURTHER RESEARCH 

1. Further characterize the TPAB process by application of other reactor configurations, such 

as a thermophilic hybrid biofilter first-stage, and a mesophilic anaerobic sequencing batch 

reactor second-stage. 

2. Determine methanogenic populations shifts which occur in the thermophilic first-stage as 

HRTs are decreased and organic loadings are increased. 

3. Operate the thermophilic first-stage at HRTs of less than 3 hrs to determine the minimum 

HRT which can be applied without adversely affecting overall two-stage TPAB perform­

ance. 

4. Perform further research on the TPAB process at system HRTs of less than 24 hrs, and at 

higher system loading rates. 

5. Operate the TPAB systems in a redesigned configuration, where the mesophilic units are 

smaller in order to fully load the second stage. 

6. Apply the TPAB process to actual industrial waste streams. 
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METHANE PRODUCTION (L/DAY) 

RX. RX. RX. RX. RX. RX. 
DATE EXP.DAY 1 2 3 4 5 6 

04-06-92 1 0.00 0.55 2.74 _ 

04-07-92 2 0.00 0.33 1.55 
04-08-92 3 0.00 0.22 1.13 - _ 

04-09-92 4 0.00 0.76 1.61 -

04-10-92 5 0.00 0.69 1.08 _ _ 

04-11-92 6 0.00 0.00 1.66 - . 
04-12-92 7 0.52 0.00 1.31 - _ • 

04-13-92 8 0.63 0.00 1.46 - _ _ 

04-14-92 9 0.44 0.29 1.11 _ « 

04-15-92 10 0.18 0.19 0.80 - _ 

04-16-92 11 0.08 0.15 0.42 - _ _ 

04-17-92 12 0.20 0.23 0.60 - _ _ 

04-18-92 13 0.22 0.42 0.66 _ _ 

04-19-92 14 0.30 0.40 0.45 - . _ 

04-20-92 15 0.44 0.36 0.54 - _ 

04-21-92 16 0.35 0.22 0.41 - _ _ 

04-22-92 17 0.35 0.24 0.68 3.64 7.69 6.11 
04-23-92 18 0.85 0.31 0.62 3.77 7.50 5.99 
04-24-92 19 0.66 0.48 0.73 4.53 8.81 5.88 
04-25-92 20 0.38 0.44 0.73 5.97 7.67 7.24 
04-26-92 21 0.49 0.44 1.08 5.18 6.66 9.09 
04-27-92 22 0.54 0.55 1.42 6.31 5.99 9.52 
04-28-92 23 0.52 0.70 2.03 7.13 5.82 11.64 
04-29-92 24 0.35 0.52 1.54 5.75 3.24 10.20 
04-30-92 25 0.59 0.64 2.45 6.02 4.38 9.05 
05-01-92 26 0.70 0.76 4.30 6.41 5.29 6.11 
05-02-92 27 0.59 0.76 2.38 6.95 5.90 9.42 
05-03-92 28 0.53 0.70 2.63 6.74 6.42 10.07 
05-04-92 29 0.65 0.70 2.78 7.49 6.53 9.19 
05-05-92 30 0.65 0.82 2.73 8.58 7.45 11.32 
05-06-92 31 0.67 0.64 2.68 8.50 6.89 8.30 
05-07-92 32 0.66 0.76 3.41 9.05 8.30 8.11 
05-08-92 33 0.90 0.75 3.11 10.20 8.56 8.78 
05-09-92 34 0.76 1.11 1.91 10.48 8.84 10.55 
05-10-92 35 1.27 1.40 4.64 12.69 17.27 13.74 
05-11-92 36 1.44 1.67 6.36 11.23 10.20 10.60 
05-12-92 37 1.44 1.78 7.51 4.27 7.01 6.72 
05-13-92 38 1.21 1.50 4.98 5.54 4.67 5.70 
05-14-92 39 1.42 1.62 7.29 5.54 3.82 6.00 
05-15-92 40 1.85 • 2.12 7.33 6.01 4.31 7.60 
05-16-92 41 1.80 1.62 6.62 4.79 4.31 5.64 
05-17-92 42 1.94 1.91 5.50 5.22 4.14 4.83 
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METHANE PRODUCTION (L/DAY) 
RX. RX. RX. RX. RX. RX. 

DATE EXP.DAY 1 2 3 4 5 6 

05-18-92 43 1.78 2.18 7.80 12.30 9.21 10.50 
05-19-92 44 2.00 2.29 7.04 9.41 7.96 8.75 
05-20-92 45 2.50 2.79 9.18 6.62 6.94 10.28 
05-21-92 46 3.16 3.65 9.68 8.12 7.24 9.84 
05-22-92 47 3.79 4.06 12.16 7.13 6.37 9.58 
05-23-92 48 3.42 3.93 12.01 6.43 10.47 11.30 
05-24-92 49 4.04 4.12 9.24 8.61 7.41 6.41 
05-25-92 50 4.67 5.00 9.33 10.87 7.22 9.36 
05-26-92 51 4.10 4.62 9.04 7.27 7.61 7.20 
05-27-92 52 5.10 5.68 8.90 10.35 7.00 9.86 
05-28-92 53 4.79 4.99 6.08 9.13 6.83 9.58 
05-29-92 54 4.85 4.80 5.37 9.26 5.85 8.93 
05-30-92 55 4.76 4.63 7.38 9.46 7.37 9.82 
05-31-92 56 4.83 4.94 10.10 9.63 11.46 9.82 
06-01-92 57 5.01 5.06 8.48 8.31 9.18 8.37 
06-02-92 58 5.76 6.00 10.60 12.30 7.43 9.60 
06-03-92 59 8.01 6.88 8.68 12.64 8.44 9.90 
06-04-92 60 7.43 7.72 13.63 10.96 9.94 6.55 
06-05-92 61 5.11 5.43 9.23 10.12 8.88 5.91 
06-06-92 62 2.20 1.85 5.12 10.88 9.23 8.47 
06-07-92 63 6.01 5.32 6.76 9.37 6.25 7.80 
06-08-92 64 5.05 6.07 6.95 8.62 5.47 6.91 
06-09-92 65 5.76 7.01 8.10 10.04 6.22 6.72 
06-10-92 66 5.82 6.89 6.78 8.22 6.37 6.73 
06-11-92 67 4.87 8.45 7.68 9.47 9.52 8:40 
06-12-92 68 4.99 6.82 9.08 9.32 9.13 7.60 
06-13-92 69 5.40 4.95 5.39 9.01 10.70 6.60 
06-14-92 70 4.34 6.45 5.45 5.60 7.41 6.97 
06-15-92 71 5.94 7.57 6.04 7.75 10.14 8.75 
06-16-92 72 4.40 5.45 7.21 9.46 10.30 8.22 
06-17-92 73 5.17 4.42 6.84 5.12 6.40 6.92 
06-18-92 74 4.92 7.82 6.81 9.64 9.20 8.32 
06-19-92 75 3.10 6.57 6.53 1.04 3.00 2.37 
06-20-92 76 2.28 6.13 5.83 2.20 1.96 1.37 
06-21-92 77 2.62 6.03 7.01 2.40 2.43 0.91 
06-22-92 78 3.05 6.36 6.15 1.33 2.49 0.90 
06-23-92 79 3.68 6.17 5.95 2.12 2.42 1.83 
06-24-92 80 3.04 6.58 6.50 0.62 1.97 1.56 
06-25-92 81 4.08 6.51 5.80 0.79 2.11 1.10 
06-26-92 82 3.64 6.53 6.77 1.62 1.90 0.73 
06-27-92 83 3.30 5.52 6.68 0.60 1.43 0.66 
06-28-92 84 3.70 6.11 7.12 1.11 1.35 0.80 
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METHANE PRODUCTION (L/DAY) 

RX. RX. RX. RX. RX. RX. 
DATE EXP.DAY 1 2 3 4 5 6 

06-29-92 85 3.72 6.88 6.99 1.10 1.31 0.85 
06-30-92 86 3.85 6.92 7.05 1.21 1.33 0.92 
07-01-92 87 4.13 6.82 4.56 1.54 0.87 0.63 
07-02-92 88 4.50 7.25 9.67 0.91 1.51 1.01 
07-03-92 89 4.52 8.25 7.05 0.81 2.15 0.92 
07-04-92 90 5.52 8.00 6.30 0.71 2.11 0.77 
07-05-92 91 5.46 7.13 7.66 1.25 1.55 0.88 
07-06-92 92 6.26 7.72 7.42 0.77 2.33 0.95 
07-07-92 93 5.98 6.26 7.05 0.66 1.91 0.77 
07-08-92 94 6.63 7.44 8.01 1.22 1.87 0.88 
07-09-92 95 6.80 7.91 7.79 0.76 1.76 0.99 
07-10-92 96 6.30 7.53 7.77 0.79 1.77 1.36 
07-11-92 97 5.91 7.52 7.55 0.92 1.97 1.22 
07-12-92 98 5.66 7.13 7.92 0.97 1.73 1.25 
07-13-92 99 6.52 7.74 6.83 0.70 1.29 1.21 
07-14-92 100 6.09 7.19 7.44 1.02 1.27 1.05 
07-15-92 101 5.90 6.92 7.09 0.82 1.42 1.11 
07-16-92 102 8.04 10.02 10.60 0.99 1.84 1.32 
07-17-92 103 10.27 12.08 12.96 l.IO 2.83 1.42 
07-18-92 104 7.66 9.91 10.67 0.77 1.83 0.99 
07-19-92 105 8.01 8.88 12.69 1.15 2.22 1.43 
07-20-92 106 8.06 8.99 11.31 1.03 1.75 1.11 
07-21-92 107 8.90 9.32 10.44 1.30 2.37 1.22 
07-22-92 108 9.37 11.37 12.22 1.33 2.22 1.37 
07-23-92 109 10.33 12.61 12.33 2.79 3.01 3.55 
07-24-92 110 11.69 13.39 14.06 2.70 3.71 3.31 
07-25-92 111 11.20 14.29 15.32 1.61 4.11 3.35 
07-26-92 112 12.88 14.77 14.91 2.51 3.75 3.81 
07-27-92 113 12.70 15.31 14.77 2.22 3.73 0.82 
07-28-92 114 13.22 15.64 11.12 0.77 3.12 0.88 
07-29-92 115 11.53 15.33 15.44 1.12 2.36 2.11 
07-30-92 116 12.79 13.98 15.66 0.98 2.88 2.12 
07-31-92 117 12.03 15.14 15.46 1.05 2.28 1.66 
08-01-92 118 12.33 15.55 16.02 1.06 2.89 1.47 
08-02-92 119 15.33 17.34 13.22 0.56 3.67 3.12 
08-03-92 120 16.32 17.31 15.42 2.03 6.22 3.88 
08-04-92 121 15.23 17.56 18.95 1.92 4.47 2.41 
08-05-92 122 17.33 19.34 17.11 1.77 4.11 2.69 
08-06-92 123 19.91 22.23 20.45 2.11 4.10 3.09 
08-07-92 124 20.81 22.13 20.66 2.57 4.12 2.88 
08-10-92 127 17.88 17.12 23.92 2.98 4.46 2.52 
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METHANE PRODUCTION (L/DAY) 

RX. RX. RX. RX. RX. RX. 
DATE EXP.DAY 1 2 3 4 5 6 

08-13-92 130 18.88 21.08 19.22 3.13 4.56 3.99 
08-14-92 131 19.87 22.08 19.02 2.66 4.23 3.88 
08-16-92 133 20.12 22.35 19.33 2.49 4.12 3.33 
08-17-92 134 22.10 23.03 19.14 2.62 4.68 3.77 
08-18-92 135 21.62 23.04 20.22 5.20 6.22 3.77 
08-20-92 137 21.77 26.78 24.77 2.92 6.80 3.69 
08-21-92 138 25.22 28.89 26.22 3.67 7.02 3.32 
08-22-92 139 20.77 28.22 27.56 3.11 6.04 3.12 
08-23-92 140 21.90 25.40 25.46 3.34 5.12 2.20 
08-24-92 141 27.11 30.23 28.03 3.31 5.44 3.44 
08-25-92 142 26.02 31.23 30.23 3.99 5.79 2.88 
08-26-92 143 24.99 28.77 32.33 3.91 5.88 2.69 
08-27-92 144 26.11 28.22 31.98 3.33 6.62 3.14 
08-28-92 145 25.89 27.65 30.11 3.12 5.89 3.56 
08-29-92 146 28.77 29.12 31.16 3.02 5.28 3.12 
08-30-92 147 26.02 28.60 29.22 3.08 6.89 3.98 
08-31-92 148 24.88 26.60 28.22 2.97 5.03 3.56 
09-01-92 149 26.50 31.22 30.42 3.05 4.89 3.51 
09-02-92 150 28.01 33.21 34.76 3.11 7.42 3.81 
09-03-92 151 26.81 32.32 30.33 3.30 8.91 4.82 
09-04-92 152 25.99 31.01 28.42 2.22 8.13 4.32 
09-05-92 153 25.55 32.01 30.66 2.61 8.22 4.25 
09-06-92 154 24.88 25.81 29.22 2.44 7.70 4.72 
09-07-92 . 155 25.11 31.11 32.55 3.32 7.99 4.99 
09-08-92 156 27.33 33.32 41.55 3.22 8.22 4.98 
09-09-92 157 29.41 34.09 36.14 3.19 7.60 5.48 
09-10-92 158 28.52 35.63 38.12 3.05 11.29 5.86 
09-11-92 159 28.33 34.12 38.01 3.02 8.88 6.78 
09-12-92 160 3.22 30.78 36.44 3.34 14.42 5.99 
09-13-92 161 4.40 36.88 36.99 4.77 20.55 8.44 
09-14-92 162 9.99 37.41 36.88 7.66 9.99 12.01 
09-15-92 163 10.01 34.11 43.02 9.23 5.43 8.96 
09-16-92 164 11.61 34.68 50.01 8.02 2.12 8.66 
09-17-92 165 10.76 35.99 49.56 6.77 5.68 8.65 
09-18-92 166 11.99 34.43 41.33 6.43 9.42 7.55 
09-19-92 167 12.11 37.92 42.77 5.12 16.42 5.77 
09-20-92 168 13.12 37.33 41.55 4.13 16.33 6.51 
09-21-92 169 13.97 38.88 41.66 3.67 15.92 4.39 
09-22-92 170 15.01 35.33 39.92 3.22 14.01 4.43 
09-23-92 171 16.65 39.77 44.62 4.45 11.81 6.44 
09-24-92 172 15.55 36.33 39.99 5.55 9.99 4.67 
09-25-92 173 16.78 37.67 38.78 5.45 11.12 5.98 
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METHANE PRODUCTION (1/DAY) 

RX. RX. RX. RX. RX. RX. 
DATE EXP.DAY 1 2 3 4 5 6 

09-26-92 174 16.77 40.23 37.23 9.22 12.01 6.23 
09-27-92 175 17.12 34.45 38.23 8.33 9.99 6.31 
09-28-92 176 18.44 44.23 37.23 9.31 9.51 5.12 
09-29-92 177 20.54 44.01 39.23 10.02 6.43 7.62 
09-30-92 178 22.77 40.23 39.99 8.77 5.23 7.35 
10-01-92 179 21.98 41.12 40.23 10.23 7.01 gjW 
10-02-92 180 . 23.97 40.32 41.02 12.32 11.01 7.78 
10-03-92 181 24.45 40.41 41.08 12.23 11.12 7.82 
10-04-92 182 24.12 42.12 42.22 10.22 11.23 6.88 
10-05-92 183 25.24 44.76 43.22 9.33 11.51 7.93 
10-06-92 184 25.23 47.99 44.23 5.88 13.82 8.01 
10-07-92 185 25.02 42.23 44.03 4.81 12.92 7.11 
10-09-92 187 27.92 39.22 40.12 3.30 13.51 4.64 
10-10-92 188 26.88 38.54 39.22 2.72 12.33 2.82 
10-11-92 189 27.92 45.01 43.23 2.77 11.20 4.43 
10-12-92 190 28.02 42.38 40.12 3.62 11.17 5.79 
10-13-92 191 29.22 44.55 42.12 2.83 12.61 7.12 
10-14-92 192 30.56 53.22 55.60 2.71 10.01 11.23 
10-15-92 193 34.92 50.33 52.23 7.44 12.62 17.81 
10-16-92 194 31.43 59.44 59.97 6.72 11.81 12.12 
10-17-92 195 35.33 53.22 55.22 6.23 11.23 11.01 
10-18-92 196 36.12 49.72 52.77 4.12 11.33 9.54 
10-19-92 197 33.12 46.34 55.88 4.63 8.59 7.72 
10-20-92 198 34.65 42.23 57.62 6.89 10.69 5.50 
10-21-92 , 199 32.23 38.66 54.77 6.51 9.55 4.76 
10-22-92 200 31.13 42.34 55.11 4.49 14.01 4.66 
10-23-92 201 34.89 43.23 58.01 4.19 9.97 5.23 
10-24-92 202 32.39 53.67 59.07 5.76 10.34 6.78 
10-25-92 203 34.23 47.23 62.23 7.66 11.59 7.03 
10-26-92 204 33.59 54.65 60.66 6.12 11.77 8.06 
10-27-92 205 34.55 54.67 62.01 6.23 9.79 13.90 
10-28-92 206 43.12 62.01 69.12 6.23 12.88 13.55 
10-29-92 207 40.12 58.12 63.12 5.99 11.02 13.99 
10-30-92 208 43.09 64.02 65.02 4.66 11.67 14.53 
10-31-92 209 41.98 63.99 67.12 4.98 12.23 16.01 
11-01-92 210 40.77 60.12 70.12 3.99 11.44 9.89 
11-02-92 211 42.88 59.12 80.12 14.24 8.66 8.88 
11-03-92 212 41.12 21.55 72.02 13.88 8.02 6.67 
11-05-92 214 40.23 29.26 58.23 9.30 6.66 25.02 
11-06-92 215 38.23 35.55 57.02 9.76 12.02 25.78 
11-07-92 216 40.23 33.44 58.23 3.23 12.66 17.92 
11-08-92 217 39.77 33.23 60.50 7.44 13.23 20.23 
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RX. RX. RX. RX. RX. RX. 
DATE EXP.DAY 1 2 3 4 5 6 

11-09-92 218 42.22 30.23 46.33 5.55 12.76 21.62 
11-10-92 219 41.43 33.34 58.42 4.88 14.76 24.12 
11-11-92 220 41.45 38.92 59.10 6.24 13.04 25.77 
11-12-92 221 40.12 43.56 58.01 7.78 11.76 23.43 
11-13-92 222 46.72 41.52 57.44 7.79 7.54 28.12 
11-14-92 223 49.48 35.56 46.43 4.02 6.89 22.23 
11-15-92 224 47.12 38.12 61.66 6.82 3.53 22.33 
11-16-92 225 46.02 49.23 60.92 7.34 8.92 25.23 
11-17-92 226 43.23 49.67 60.12 6.92 10.43 19.55 
11-18-92 227 44.65 41.88 48.23 7.01 7.66 18.34 
11-19-92 228 43.66 52.98 64.56 4.50 10.87 17.45 
11-20-92 229 47.23 55.65 68.12 6.24 13.67 22.12 
11-21-92 230 45.33 58.71 67.65 6.01 15.66 20.01 
11-22-92 231 46.13 59.04 66.54 6.22 11.45 18.23 
11-23-92 232 46.77 59.14 66.92 5.92 20.34 16.34 
11-24-92 233 47.65 59.79 68.77 6.67 18.23 16.42 
11-29-92 237 43.66 57.12 74.67 4.45 29.32 21.72 
11-30-92 238 47.89 61.67 78.23 5.12 22.54 16.43 
12-01-92 239 43.67 57.89 77.60 5.23 12.23 16.25 
12-02-92 240 47.23 55.92 78.23 5.02 14.23 15.34 
12-03-92 241 44.23 61.78 80.62 5.34 16.23 15.78 
12-04-92 242 42.23 59.56 67.03 5.37 24.12 15.87 
12-05-92 243 43.55 58.04 61.89 4.92 16.78 15.52 
12-07-92 245 44.45 55.23 59.23 6.23 5.70 18.94 
12-08-92 246 46.25 60.45 60.78 5.34 4.12 16.12 
12-09-92 247 45.23 68.13 63.23 8.34 19.15 20.83 
12-10-93 248 45.12 63.22 71.75 6.62 8.34 17.76 
12-12-92 250 46.45 61.12 78.34 12.23 13.43 15.51 
12-13-92 251 45.92 66.05 85.45 13.32 20.23 16.78 
12-14-92 252 40.76 61.54 75.50 10.23 26.45 13.52 
12-15-92 253 46.01 66.60 80.52 9.92 25.52 14.66 
12-16-92 254 38.01 60.02 85.23 10.23 27.32 15.56 
12-17-92 255 29.54 53.32 76.62 6.77 25.52 15.34 
12-18-92 256 41.12 52.23 74.34 5.79 23.23 15.52 
12-20-92 258 38.23 56.23 68.12 8.87 29.23 14.76 
12-21-92 259 38.44 56.82 76.67 6.87 34.89 16.23 
12-30-92 269 41.12 64.23 72.12 8.12 34.56 16.92 
12-31-92 270 39.12 64.93 74.23 7.76 36.23 18.12 
01-01-93 271 40.12 68.40 74.56 6.89 37.23 16.23 
01-02-93 272 42.12 64.23 77.23 7.89 39.23 16.01 
01-03-93 273 38.30 64.31 71.78 19.34 33.34 22.12 
01-04-92 274 42.92 69.62 60.23 14.72 30.89 23.78 
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DATE EXP.DAY 1 2 3 4 5 6 

11-09-92 218 42.22 30.23 46.33 5.55 12.76 21.62 
01-06-93 276 30.12 53.13 60.12 18.23 49.23 32.23 
01-07-93 277 28.33 57.23 63.13 24.23 50.23 32.23 
01-08-92 278 33.23 54.23 59.22 24.23 55.23 28.98 
01-09-93 279 30.33 56.12 57.23 25.62 54.23 29.24 
01-10-92 280 30.01 54.34 59.23 25.62 54.77 30.23 
01-11-92 281 32.23 55.27 60.23 23.24 51.23 31.43 
01-12-93 282 31.12 53.92 67.23 22.23 58.23 34.33 
01-13-92 283 31.41 60.34 72.23 18.23 63.23 32.23 
01-14-92 284 29.62 56.93 85.23 13.12 67.26 35.23 
01-15-92 285 31.10 63.23 71.12 19.12 61.12 37.66 
01-16-92 286 27.11 57.43 76.23 17.23 60.23 36.54 
01-17-92 287 30.71 58.23 70.23 19.23 64.55 32.97 
01-18-92 288 36.23 59.32 82.23 20.33 69.76 38.12 
01-19-93 289 36.34 61.12 79.23 20.92 73.23 38.23 
01-20-93 290 33.23 64.46 85.34 17.72 71.03 36.78 
01-21-93 291 33.67 62.12 82.23 18.23 77.23 36.67 
01-23-93 293 34.23 63.12 80.12 19.23 75.92 40.23 
01-24-93 294 35.23 52.10 83.31 22.23 79.23 36.44 
01-25-93 295 36.62 54.23 87.34 19.23 80.12 43.12 
01-26-93 296 30.90 54.62 95.13 18.77 78.12 41.54 
01-27-93 297 36.60 57.72 89.23 18.54 85.23 38.82 
01-28-93 298 37.73 56.23 87.23 19.24 79.23 43.12 
01-29-93 299 35.44 51.56 79.52 17.23 79.45 42.33 
01-30-93 . 300 31.89 52.34 83.23 15.92 82.34 44.45 
01-31-93 301 34.12 57.43 79.52 19.23 85.77 43.64 
02-01-93 302 38.32 61.66 96.67 18.87 87.77 43.78 
02-02-93 303 33.52 64.76 88.23 21.25 90.74 45.23 
02-03-92 304 36.24 69.78 97.23 21.53 89.23 47.27 
02-04-92 305 34.12 66.23 96.20 25.54 88.89 46.23 
02-05-93 306 33.52 65.17 98.33 20.14 95.23 49.56 
02-06-92 307 32.23 68.67 100.23 21.23 92.44 47.23 
02-07-93 308 34.77 68.43 97.19 26.23 94.45 47.09 
02-08-93 309 27.66 43.81 106.23 24.98 83.12 27.67 
02-09-93 310 27.89 41.34 105.23 23.92 80.23 28.53 
02-12-93 313 38.72 68.13 100.12 24.23 87.12 46.23 
02-13-93 314 42.66 72.15 99.62 25.75 96.12 50.01 
02-14-93 315 34.88 69.23 93.14 27.12 95.12 52.56 
02-15-92 316 38.77 73.14 97.88 24.92 97.14 49.28 
02-16-93 317 43.70 70.12 100.13 32.14 100.41 53.13 
02-17-93 318 50.92 73.55 102.13 28.14 104.13 56.34 
02-18-93 319 46.23 76.23 99.23 29.23 102.12 57.13 
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RX. RX. RX. RX. RX. RX. 

DATE EXP.DAY 1 2 3 4 5 6 

02-19-93 320 43.23 75.44 106.25 28.90 106.43 58.12 
02-24-93 326 56.12 79.99 109.28 29.23 108.33 59.12 
02-25-92 327 47.12 76.23 103.29 33.73 111.34 57.89 
02-27-93 328 45.12 81.12 102.20 32.53 109.00 57.78 
02-28-93 329 48.12 80.99 105.66 29.80 111.69 58.47 
03-01-93 330 47.21 79.57 103.00 31.89 113.90 59.12 
03-10-93 339 9.65 15.01 5.12 26.62 31.32 15.01 
03-11-93 340 14.45 16.79 5.78 29.62 17.23 14.59 
03-13-93 342 7.98 10.01 6.78 17.98 15.28 9.87 
03-14-93 343 6.56 9.67 5.98 15.01 11.23 7.89 
03-15-93 344 8.01 10.72 7.68 17.18 16.34 13.45 
03-16-93 345 7.80 13.67 8.34 16.01 17.12 9.10 
03-17-93 346 7.67 13.23 9.27 13.12 13.94 6.92 
03-18-93 347 8.78 11.34 9.67 11.02 15.34 6.90 
03-19-93 348 9.78 13.20 11.23 10.01 12.45 5.78 
03-20-93 349 8.90 12.97 10.32 10.32 12.89 6.57 
03-21-93 350 9.34 12.27 12.47 9.02 13.03 6.97 
03-22-93 351 11.00 12.78 12.97 8.57 13.10 6.46 
03-23-93 352 9.57 13.67 13.99 8.23 12.65 5.67 
03-24-93 353 10.20 13.01 13.85 9.02 13.00 5.61 
03-25-93 354 10.01 14.26 14.27 7.44 12.81 5.90 
03-26-93 355 10.40 13.87 14.01 8.32 12.73 5.78 
03-27-93 356 10.21 14.67 14.29 9.01 13.08 7.01 
03-28-93 357 10.47 13.92 14.56 8.10 12.72 5.10 
03-29-93 358 9.70 15.78 13.97 8.62 12.67 6.78 
03-30-93 359 10.56 18.65 16.78 9.63 14.67 4.78 
03-31-93 360 13.20 19.89 17.98 7.02 16.78 4.23 
04-01-93 361 7.34 20.02 18.78 7.42 18.03 5.78 
04-02-93 362 13.23 19.89 17.90 6.56 16.78 7.40 
04-03-93 363 11.44 23.56 19.07 5.78 15.67 6.02 
04-04-93 364 11.03 20.08 20.54 3.64 17.40 5.81 
04-05-93 365 10.42 18.67 19.55 4.56 14.89 4.56 
04-06-93 366 10.80 19.02 19.89 5.69 16.23 4.56 
04-07-93 367 10.89 20.02 20.93 5.93 18.34 4.78 
04-08-93 368 10.01 20.32 20.90 6.05 18.43 4.90 
04-09-93 369 11.05 20.78 21.31 5.98 18.01 4.62 
04-10-93 370 10.85 20.48 22.67 6.39 16.10 4.23 
04-11-93 371 10.50 20.11 20.46 5.79 16.70 5.43 
04-12-93 372 9.90 19.38 19.46 6.02 15.09 4.67 
04-13-93 373 14.20 22.67 24.56 6.23 18.03 7.89 
04-14-93 374 14.37 32.34 32.89 4.01 33.20 8.42 
04-15-93 375 13.72 29.98 31.89 2.56 19.67 7.34 
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METHANE PRODUCTION (L/DAY) 
RX. RX. RX. RX. RX. RX. 

DATE EXP.DAY 1 2 3 4 5 6 

04-16-93 376 15.41 31.13 35.41 3.89 41.34 8.89 
04-17-93 377 13.21 27.00 32.29 2.98 31.31 8.98 
04-18-93 378 14.89 25.78 32.10 6.67 27.23 8.02 
04-19-93 379 15.90 29.98 34.78 6.62 31.23 8.20 
04-20-93 380 16.90 32.98 36.79 7.56 27.89 7.21 
04-21-93 381 15.61 29.87 36.99 7.02 29.03 7.91 
04-22-93 382 15.40 30.91 37.32 7.23 32.12 9.20 
04-23-93 383 11.02 32.01 40.78 7.67 27.23 9.34 
04-25-93 385 20.21 39.10 45.78 9.23 36.78 9.67 
04-26-93 386 16.43 35.34 46.56 10.34 37.89 10.89 
04-27-93 387 24.20 38.43 50.78 11.45 43.43 15.82 
04-28-93 388 23.43 36.23 51.80 12.46 49.56 19.55 
04-29-93 389 22.89 37.40 51.76 12.23 47.80 17.67 
04-30-93 390 24.56 38.79 53.34 12.02 48.87 19.00 
05-14-93 401 40.77 44.89 70.21 12.10 35.89 26.78 
05-15-93 402 40.09 47.01 75.12 11.98 42.67 30.05 
05-16-93 403 38.92 47.34 71.02 9.56 48.12 29.80 
05-17-93 404 36.80 43.12 61.04 12.10 43.12 26.99 
05-18-93 405 35.01 48.12 69.67 13.02 40.43 28.91 
05-19-93 406 34.02 47.02 68.02 11.65 42.67 28.90 
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APPENDIX B. AMMONIA PRODUCTION DATA 
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48 hr System HRT 
System NHj, mg/L as N 
Loading 

g COD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

1 66 92 113 113 73 98 

2 184 206 209 218 202 280 

3 177 198 244 335 304 332 

4 215 277 291 429 375 401 

5 335 312 422 550 568 725 

6 422 419 399 519 502 745 

7 462 662 799 899 562 800 

8 512 715 898 967 675 952 

9 612 914 1011 1102 898 1132 

10 752 928 1058 1189 1198 1149 
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System 
Loadinj 

; COD/L 

2 

3 

5 

7 

9 

10 

11 

12 

13 

14 

15 

16 

Rx.6 

220 

275 

380 

716 

902 

Rx.6 

678 

919 

1424 

1484 

1234 

1220 

1250 
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36 hr System HRT 
NH3, mg/L as N 

Rx.l Rx.2 Rx.3 Rx.4 Rx.5 

153 

126 

193 

438 

464 

260 

283 

383 

523 

634 

320 

382 

467 

584 

888 

440 

520 

553 

636 

1100 

223 

276 

376 

680 

996 

24 hr System HRT 
NHj, mg/L as N 

Rx.l Rx.2 Rx.3 Rx.4 Rx.5 

183 

242 

379 

463 

190 

71 

109 

397 

434 

567 

731 

540 

660 

623 

728 

842 

917 

1203 

1279 

1292 

1330 

887 

919 

906 

1379 

1554 

1522 

1591 

607 

812 

924 

1357 

1259 

1273 

1362 
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APPENDIX C. VOLATILE ACIDS DATA 
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48 hr System HRT 
System Total Volatile Acids, mg/L 
Loading 

g COD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

1 128 288 57 25 14 8 

2 211 273 117 19 15 6 

3 573 296 170 6 6 6 

4 1078 325 117 16 15 13 

5 999 387 363 44 21 26 

6 1057 173 130 21 40 19 

7 1129 411 226 23 11 20 

8 2152 1273 400 18 38 17 

9 2318 1577 431 47 46 56 

10 1769 1151 150 10 17 22 
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36 hr System HRT 
System Total Volatile Acids, mg/L 
Loading 

gCOD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

2 .793 423 792 113 80 53 

3 1319 488 522 37 23 16 

5 1964 540 171 23 15 12 

7 1660 601 231 34 23 40 

9 2245 621 242 39 31 31 

24 hr System HRT 
System Total Volatile Acids, mg/L 
Loading 

gCOD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

10 805 857 809 80 141 82 

11 1422 1343 747 50 76 47 

12 1601 1500 575 33 75 98 

13 1715 1108 870 85 34 59 

14 2168 1482 803 43 38 33 

16 2679 1509 1002 66 74 56 
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TPAB 1 (1:7) Thermophilic First Phase 
Specific Volatile Acids, mg/L 

Loading 48 hr HRT 
g COD/L/day Total Acetic Propionic Butyric Valeric 

1 128 41 67 14 6 
2 211 103 67 43 12 
3 573 193 343 64 12 
4 1078 455 353 194 77 
6 1057 404 414 187 53 
7 1129 650 296 333 37 
8 2152 1132 496 386 138 
9 2318 918 371 735 339 

10 1769 905 386 334 43 

Specific Volatile Acids, mg/L 
36hrHRT 

2 793 433 209 106 45 
3 1319 804 372 118 25 
5 1964 1153 667 150 14 
7 1660 912 606 125 17 
9 2245 1153 792 237 63 

Specific Volatile Acids, mg/L 
24 hr HRT 

10 805 483 121 193 9 
11 1422 675 445 303 84 
12 1601 632 374 426 169 
13 1715 617 341 536 222 
14 2168 760 475 611 324 
16 2679 951 876 553 297 
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D/L 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2 
3 
5 
7 
9 

10 

11 
12 
13 
14 
16 

223 

TPAB 2 (1:3) Thermophilic First Phase 
Specific Volatile Acids, mg/L 

48 hr HRT 
Total Acetic Propionic Butyric Valeric 

288 113 163 10 2 
273 167 91 12 3 
296 108 164 20 3 
325 171 109 40 6 
387 211 133 38 5 
173 93 59 17 4 
411 122 261 19 9 

1273 454 606 131 21 
1577 321 1000 194 62 
1151 263 792 177 19 

Specific Volatile Acids, mg/L 
36 hr HRT 

423 96 257 58 12 
488 148 319 17 4 
540 246 260 33 6 
601 311 239 46 5 
621 320 250 43 8 

Specific Volatile Acids, mg/L 
24 hr HRT 

857 433 327 90 8 
1343 587 564 141 51 
1500 558 560 266 117 
1108 366 526 165 51 
1482 466 589 302 125 
1509 465 612 302 130 
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TPAB 3 (1:1) Thermophilic First Phase 

System Specific Volatile Acids, mg/L 
Loading 48 hr HRT 

g COD/L/day Total Acetic Propionic Butyric Valeric 

1 57 23 30 4 2 
2 117 96 16 3 1 
4 117 72 27 17 2 
5 363 194 147 19 3 
6 130 42 82 5 1 
7 226 122 92 10 2 
9 431 59 351 13 7 

10 150 54 90 6 2 

Specific Volatile Acids, mg/L 
36 hr HRT 

2 792 161 554 61 16 
3 522 89 423 7 3 
5 171 57 113 6 1 
7 231 89 127 15 2 
9 242 58 174 9 1 

Specific Volatile Acids, mg/L 
24 hr HRT 

10 809 169 554 66 20 
11 747 215 502 55 16 
12 575 137 395 33 9 
13 870 200 547 84 38 
14 803 168 525 85 26 
16 1002 232 635 105 30 
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APPENDIX D. SOLIDS DATA 
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Total and Suspended Solids (mg/L) 
System 48 hr System HRT 
Loading Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

g COD/L/day TSS VSS TSS VSS TSS VSS TSS VSS TSS VSS TSS VSS 

1 335 220 330 180 270 180 190 70 180 80 180 100 

2 560 480.330 310 385 320 140 130 155 145 160 130 

3 925 720 760 670 705 510 240 190 190 170 200 140 

4 1320 990 865 720 560 435 215 180 160 145 150 130 

5 1250 795 765 520 540 335 200 120 200 130 190 120 

6 1480 880 650 490 625 475 220 135 260 140 330 130 

7 1560 1240 560 420 1195 880 255 140 295 130 290 90 

8 6360 5490 835 760 1010 790 475 420 550 290 320 220 

9 5390 4795 1020 870 1000 870 425 330 500 435 355 300 

10 11460 9720 1290 1070 1040 965 415 350 615 530 350 320 
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Total and Volatile Suspended Solids (mg/L) 
System 36 hr System HRT 
Loading Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

g COD/L/day TSS VSS TSS VSS TSS VSS TSS VSS TSS VSS TSS VSS 

2 825 720 650 505 570 350 335 250 215 200 165 100 

3 970 805 720 610 445 310 210 180 130 115 135 95 

5 2990 2420 1260 1010 815 580 330 250 495 320 290 230 

7 3000 2210 1420 1105 2160 1760 660 505 435 275 350 235 

9 7450 5225 1675 1325 2045 1690 635 515 305 245 415 255 

Total and Volatile Suspended Solids (mg/L) 
System 24 hr System HRT 
Loading Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

g COD/L/day TSS VSS TSS VSS TSS VSS TSS VSS TSS VSS TSS VSS 

10 1740 1490 1430 1110 895 685 225 165 705 480 375 205 

11 3715 3245 4730 4130 1100 1045 490 490 510 420 955 765 

12 5545 4565 3605 2980 1205 1130 535 535 925 605 1345 955 

13 3925 3560 3980 3505 2005 1710 920 840 995 830 980 900 

14 2380 2060 3900 3205 1805 1625 1450 1160 655 425 525 400 

15 5685 4690 4430 3750 1370 1310 540 530 540 490 610 440 

16 3125 2710 1275 1275 2380 2095 1070 795 700 570 610 340 
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E. pH DATA 
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48 hr System HRT 
System pH at COD Loading/Data Points 
Loading 

gCOD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

1 7.01 7.24 7.27 7.40 7.51 7.74 
2 7.18 7.25 7.13 7.50 7.56 7.37 
3 7.07 6.95 7.18 7.33 7.76 7.60 
4 7.01 6.90 7.17 7.35 7.66 7.70 
5 7.23 6.86 7.10 7.31 7.53 7.63 
6 7.35 7.85 7.33 7.46 7.52 7.52 
7 6.86 7.10 7.02 7.37 7.53 7.36 
8 6.76 7.37 7.40 7.51 7.54 7.47 
9 6.62 7.44 7.42 7.47 7.37 7.56 

10 6.93 7.56 7.85 7.67 7.61 7.68 

36 hr System HRT 
System pH at COD Loading/Data Points 
Loading 

gCOD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

2 6.88 7.15 7.24 7.53 8.36 8.35 
3 6.90 7.21 7.20 7.67 8.13 8.21 
5 6.99 7.32 7.26 7.65 8.31 8.29 
7 6.87 6.78 6.78 6.79 7.18 6.92 
9 6.73 6.71 7.27 7.56 7.81 7.78 

24 hr System HRT 
System pH at COD Loading/Data Points 
Loading 

gCOD/L/day Rx.l Rx.2 Rx.3 Rx.4 Rx.5 Rx.6 

10 7.10 7.34 7.19 7.40 7.42 7.48 
11 6.85 7.05 7.30 7.37 7.46 7.51 
12 6.46 7.08 7.42 7.47 7.61 7.63 
13 6.51 7.12 7.51 7.57 8.02 7.73 
14 6.47 7.72 7.86 7.86 8.26 8.00 
15 6.48 7.25 7.00 7.28 8.22 7.46 
16 6.56 7.03 7.64 7.73 8.12 7.42 
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APPENDIX F. ENGINEERING APPLICATIONS-ENERGY BALANCE 
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In a real-world application of the TPAB process, it is necessary to determine the energy 

balance for the system in terms of energy required to heat incoming wastes and energy produced 

via methane production. The following example is an energy balance for a hypothetical 

industrial waste at influent waste temperatures ranging from 50° to 110° F and waste strengths 

of 7,500 to 15,000 mg/L of COD ( 3,750 to 7,500 mg/L of BOD ). An economic analysis using 

this example will also be presented including the value of excess methane production and 

reduction of sewer-use fees. 

Energy Balance 

1. Assume a daily volume of waste of ~ 20,000 flVday 

= 564,000 L/day 

= 149,009 gpd 

= 1,242,737 #/day 

2. Size the TPAB systems; 

Assume a 24 hr system HRT 

a. Svstem 1 (1:1 volume ratio) 

Thermophilic Unit = 10,050 Dia=20 ft Ht=32 ft 
Mesophilic Unit = 10,050 ft^ Dia=20 ft Ht=32 ft 

b. Svstem 2 (1:3 volume ratio) 

Thermophilic Unit = 4,950 ft^ Dia=15 ft Ht=28 ft 
Mesophilic Unit = 14,725 ft^ Dia=25 ft Ht=30 ft 
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c. System 3 (1:7 volume ratio) 

Thermophilic Unit = 2,650 ft^ Dia=15 ft Ht=15 ft 
Mesophilic Unit = 17,180 ft^ Dia=25 ft Ht=35 ft 

3. Determine the theoretical methane production from the wastestream. 

In this example, influent COD conentrations of 7;500 mg/L, 10,000 mg/L, and 15,000 
mg/L will be assumed. 

Assume TPAB TCOD system removals = 95% 
Assume BTU value of methane = 960 BTU/ft^ 

a. At influent COD concentration of 7.500 mg/L: 

CH4 BTU/day = (564,000 L/day)(0.35 L CH/g COD removed) 
(7.5 g C0D/L)(1 ftV28.3 L)(960 BTU/ft' CH4)(.95) 

CH. BTU/dav = 47.880.000 BTU/dav 

b. At influent COD concentration of 10.000 mg/L: 

CH, BTU/dav = 63.840.000 BTU/dav 

c. At influent COD concentration of 15.000 mg/L: 

CH^ BTU/dav = 95.760.000 BTU/dav 

4. Determine the conductive heat losses in the tanks for the three TPAB systems: 

q = U A A T 

where: 

q = Heat loss, BTU/hr 
u = Overall coffficient of heat transfer. 

(BTU/ft^-hr-T) 
A = Area of evaluation 

AT = Temperature change, °F 
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Assume: 

Ambient Air Temperature = 23° F 
Average Ground Temperature = 50° F 

U„3„3 =0.12BTU/ft'-hr-°F 
=0.15BTU/tf-hr-°F 

U„„f =0.16BTU/ft'-hr-°F 

a. System 1 (1:1 volume ratio) 

For both stages: 

Wall area = (3.14)(20 ft)(32 ft) = 2,010 
Floor area = (3.14)(20 ft)^ = 1,260 ft^ 
Roof area = (3.14) (20 ft)^ = 1,260 ft^ 

Thermophilic Conductive Losses: 

Thermphilic stage operated at UTF 

1. Wall Loss 

q =(0.12BTU/ft^-hr-°F)(2,010ft^) 
(131-23°F)(24 hr/day) 

q = 625,190 BTU/day 

2. Roof Loss 

q = (0.16 BTU/ft^-hr-°F)(l,260 ff) 
(131-23°F)(24 hr/day) 

q = 522,550 BTU/day 

3. Floor Loss 

q = (0.15 BTU/ft2-hr-°F)(l,260 ft^) 
(131-50°F)(24 hr/day) 

q = 367,400 BTU/day 
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Total Thermophilic Conductive Losses = 1,515,140 

^wall Aroof Çifloor 

Mesophilic Conductive Losses: 

1. Wall Loss 

q = (0.12 BTU/A^-hr-T)(2,010 ft^) 
(95.23T)(24 hr/day) 

q = 416,800 BTU/day 

2. Roof Loss 

q =(0.16BTU/ft^-hr-T)(l,260tf) 
(95-23''F)(24 hr/day) 

q = 348,360 BTU/day 

3. Floor Loss 

q = (0.15 BTY/ft^-hr-°F)( 1,260 A") 
(95-50°F)(24 hr/day) 

q = 204,120 BTU/day 

Total Mesophilic Conductive Losses = 970,000 BTU/day 

Qwall Iroof ^ Qnoor 

Total Conductive Losses Svstem 1 n:l1 = 2.485.000 BTU/dav 
(Thermophilic + Mesophilic) 

b. Svstem 2 H :3 volume ratio) 

Same type calculations as illustrated above 
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Total Conductive Losses = Thermophilic + Mesophilic 

Total Conductive Losses = 909,900 BTU/day + 1,277,100 BTU/day 

Total Conductive Losses Svstem 2 fl:3) = 2.187.000 BTIJ/dav 

c. Svstem 3 ("1:7 volume ratio") 

Same type calculations as illustrated above 

Total Conductive Losses = Thermophilic + Mesophilic 

Total Conductive Losses = 719,250 BTU/day + 1,429,750 BTU/day 

Total Conductive Losses Svstem 3 fl:7) = 2.149.000 BTU/dav 

5. Heat Exchanger Analysis for the three TPAB systems: 

Assume that the raw waste can be heated to 100° F using a heat exchanger which will 

remove heat between the first and second stages. Assume heat exchangers will be used to heat 

raw waste at incoming raw waste temperatures of 50, 65, and 80° F (chosen). Supplemental heat 

in the form of direct steam injection will add additional heat to increase the temperatures of the 

the raw waste from 100 to 131° F. At raw waste temperatures of 95 and 110° F, a cooling water 

heat exchanger will be used to remove excess heat from between the thermophilic and 

mesophilic stages, and the raw waste will be heated to 131° F using direct steam injection. 
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a. Mass Flow Rate of Raw Wastes = M 

M = (150,000 gal/day)(day/86,400 sec)(8.34#/gal) 

M = 14.5 lb/sec 

b. Determine heat removed from waste between thermophilic stage (131° F) and 

mesophilic stage (95° F). 

q  =  M x C p X A T  

where: 

q = heat recovered (BTU/sec) 
M = mass flow rate (lb/sec) 
Cp = heat capacity (BTU/lb -°F) 
AT = temperature difference (°F) 

q = (14.5 lb/sec) (1.0 BTU/lb -° F) (131-95°F) 

q = 522 BTU/sec = 1.88 MBTU/hr = 45.1 MBTIJ/dav 

c. Size the heat exchangers, and determine excess energy necessary to heat waste to 131° 
F. 

Example Calculation 

Influent raw waste temperature 50° F 

Assume raw waste can be heated from 50 to 100° F using heat removed from between 
the thermophilic and mesophilic stages. 

q = U X A x AT,^ 
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q = heat recovered (BTU/hr) 
U = overall heat transfer coefficient 

(BTU/tf-hr-°F) 
A = Area heat exchanger (ft^) 

AT|„= log mean temperature difference 
AT,„= AT2-AT,/ln(AT2/AT, 
AT, = temperature difference exit  heat  exchanger 
AT; = temperature difference entrance heat exchanger 

Note: The log-mean temperature difference should ideally be used when the differences 
between the entrance and exit heat exchanger temperatures is large. 

In this example, the raw waste will be heated from 50 to 100° F, and the thermophilic effluent 
will decrease in temperature from 131 to 95° F. 

AT,„ = (95-50° F) - (131-100° F) 
= 37.6° F 

(95-50° F) 
In 

(131-100° F) 

Size the heat exchanger: 

Assume U = 210 BTU/ft^-hr-°F 

A  =  q / U  A T , „  

A = 1.88 MBTU/hr/(210 BTU/ft^-hr-°F) (37.6° F) 

à = 238 

Assume a 50 (2 in) tube bundle heat exchanger 

Area/linear ft. = (2in/12in)(3.14)(50 tubes)(l ft) 

= 26.2 ft^/linear foot 
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Total length heat exchanger = 238 ft^/ 26.2 ftVft 

Total length heat exchanger = 9 ft 

Excess methane necessary to heat waste from 100 to 131° F. 

q = M X Cp X AT 

q = (14.5 lb/sec)(l BTU/Ib-°F)(131-100°F) 

q = 450 BTU/sec = 26.970 BTU/min 

q =38.84 MBTU/day 

At raw influent waste temperatures of 95 and 110° F, a a heat exchanger will be 

employed using a cooling water to decrease temperatures from 131 to 95° F. The cooling 

water temperature will increase from 50 to 80° F. The raw waste will be directly heated using 

steam injection and will not pass through a heat exchanger. 



www.manaraa.com

238 

Table 25. Summary table of heat exchanger areas and excess energy necessary to heat wastes 

Inf. Area Length Excess 
Temp. Exchanger Exchanger Methane Needed 
°F ft MBTU/day 

50 238 9 38.84 

65 293 11 38.84 

80 406 16 38.84 

95 187 7 45.10 

110 187 7 26.31 

Energy Balance Calculation: 

Positive Energy Balance (BTU/day) = 

Methane generated daily - Energy necessary to heat waste - Average conductive heat losses 

Example 

At an influent waste concentration of 7,500 mg/L and an influent waste temperature of 50° F: 

Methane generated daily = +47,880,000 BTU/day 

Energy needed to heat wastes = -38,836,800 BTU/day 

Average conductive losses = -2,273,700 BTU/day 

Excess Energy +6,769,500 BTU/day 
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The summary table for the energy balances for the three TPAB systems at influent CODs of 

7,500 to 15,000 mg/L at influent waste temperatures of 50°, 65°, 80°, 95° and 110° F are 

shown in the following table. 

Table 26. Summary for Total Energy Balance and Methane Production 

Energy Balance 
Inf Waste Excess 
COD Temp. Methane Production Methane Value 
(g/L) (°F) (MBTU/day)(MBTU/yr) ($/day) ($/yr) 

7.5 6.8 2470.9 27 9880 

10.0 50 22.7 8296.3 91 23185 

15.0 54.7 19947.1 219 79790 

7.5 6.8 2470.9 27 9880 

10.0 65 22.7 8296.3 91 23185 

15.0 54.7 19947.1 219 79,790 

7.5 6.8 2470.9 27 9880 

10.0 80 22.7 8296.3 91 23185 

15.0 54.7 19947.1 . 219 79790 

7.5 .5 186.2 2 738 

10.0 95 16.5 6009.9 66 24040 

15.0 48.4 17660.7 194 70642 

7.5 19.3 7043.6 77 28175 

10.0 110 35.3 12869.0 141 51425 

15.0 67.2 24519.8 269 98,080 



www.manaraa.com

240 

The summary table illustrates energy balances for the three TPAB systems at wastewater 

influent COD concentrations ranging from 7,500 to 15,000 mg/1. It can be summarized that 

there is a positive energy balance in terms of excess methane at any of the influent 

temperatures. Also, it can be concluded that influent waste concentrations of 10,000 mg/L or 

higher are necessary to produce excess methane valued in excess of $20,000 per year. At an 

influent COD concentration of 10,000 mg/L, the major savings for the system will be the 

reduction in sewer-use fees as shown below. 

Reduction in Sewer-Use Fees 

In addition to the monitary value of methane production from the TPAB systems, even 

more sigificant savings would be realized based on reduction of sewer-use fees. Based on the 

sewer-use fee of $1.79/# BOD/month from the City of Cedar Rapids Wastewater Treatment 

Plant ( July, 1993 ), the savings on sewer-use fees can be calculated as illustrated below. 

1. Assume BOD/COD ratio of the wastewater is 0.50 (this value will vary depending on the 

wastestream). If the COD of the wastewater is 10,000 mg/L, the BOD of the wastewater 

will be 5,000 mg/L. 

2. Reduction in Sewer-Use Fees - Example Calculation 

Assume BOD reduction = COD reduction = 95% for the TPAB 
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Reduction in Sewer-Use Fees - Example Calculation 

Assume BOD reduction = COD reduction = 95% for the TPAB 
systems. 

Q = Wastewater Flow = 564,000 L/day 

Influent Wastewater = 10,000 mg/L COD = 5,000 mg/1 BOD 

Influent Wastewater = 6,211 # BOD/day 

Savings($/yr) = (.95)(6,211 #/day)($1.79/# mo)(12 mo/yr) 

= $126,740/yr for BOD reduction 

Total Savings =COD reduction + Excess Methane Production 

At an influent temperature of 80° F, and an influent COD of 10,000 mg/L: 

Total Savings = $ 126,740/yr + $ 23,185/yr 

Total Savings = $ 149,925/yr 

3. Amount of money which can be invested with a 3- year payback period, assuming a 

total savings of $ 149,925/yr, at a prime interest rate of 8%: 

( l+r)"-l  

P = • A 

(1+r)" • r 

where. 
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P = Amount invested($), to be paid back in n years 

r = Prime interest rate, assume 8% 

A = Dollar return per year($149,925/yr) 

P = $386.100 

Therefore, an initial investment of $386,100 for capital costs can be made, and will have a 

payback time of 3 years using this example. This is for an industry which would generate only 

150,000 gallons/day of wastewater. Initial investment figures would be higher as volumes 

increased. If known, operating and maintenance costs would normally be included in this 

calculation. 

Example II 

Assume a full-scale application of the TPAB process to an industrial wastewater in Cedar Rapids 

Iowa. Assuirie a BOD; of 3.75 g/L, a waste flow of 2 MGD, and a raw waste temperature of 95° 

F. 

Influent wastewater= (3.75 g/L)(7,570,000 L/day)(l#/454g) = 62,528 # BOD^/day 

Sewer Savings = (.95)(62,528#/day)($l .79/# mo)(12 mo/yr) = $1.275.900/vr 

Methane Produced= 

(7,570,000L/day)(.35L CH4/g COD)(7.5 g COD/L)(960 BTU/ft3)(lfl3/28.3L)(.95rem) 

= 642.644.680 BTU/dav 
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Average Conductive Heat Losses = 30.279.667 BTU/day 

Methane to heat wastes 

q = M(1 BTU/#-F)(131-95 F) 

M = 2 MGD (1 day/86,400 sec)(8.34 #/gal) 

M = 193 #/sec 

q = (193 #/sec)(l BTU/# F)(131-95 F) 

q = 6950 BTU/sec = 600.480.000 BTU/day 

Excess Methane 

Methane produced-Methane to heat wastes - Conductive Heat Losses 

642,644,680 BTU - 30,279,667 BTU - 600,480,000 BTU 

= 11,885,014 BTU/day 

= 4338 MBTU/yr 

At methane value of $4.00/MBTU 

= $17.400/vr 

Total Savings: 

Sewer Use Fees + Value of Excess Methane 

$l,275,900/yr +$17,400/yr 

Total Savings = S1.293.300/vr 
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How much money can be invested at a 3 -year payback period? 

P = ? 

n = 3 years 

r = 8% 

A = dollar retum/yr = $l,293,300/yr 

P = ri + .08V -  1 X 1,293,288 

( 1 + .OSy • .08 

P = $ 3.332.800 
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